2025年度 東京医科大学(前期)

医学部

試験時間:60分

◎ 全問必答

1

(1)
$$\frac{\cos 25^{\circ} + \cos 35^{\circ}}{\sin 40^{\circ} + \cos 40^{\circ}} = \frac{\sqrt{7}}{1}$$

である。

(2) 放物線 $y = 3x^2 - 4x - 5$ と放物線 $y = -2x^2 + 15x + 7$ の 2 つの共有点を通る直線の方程式は、

である。

(3)
$$\int_{0}^{4} x \sqrt{x^{2} - 2x + 1} \, dx = \boxed{\frac{\tau \Box}{\forall}}$$

である。

(4) $\omega = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}$ $\xi \neq \lambda \xi$,

$$(2-\omega)(2-\omega^2)(2-\omega^3)(2-\omega^4) =$$
 シス

である。ただし,i は虚数単位である。

- **2** 集合 $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ の部分集合について考える。
- (2) 集合 A の部分集合 B, C であって, $B \subset C$ となるような B と C の選び方は全部で **エオカキ** 通りある。
- (3) 集合 A の部分集合 B, C であって, $B\cap C$ が空集合となるような B と C の選び方は全部で 2 **クケコサ** 通りある。

3 正の整数 N の桁数を f(N) で表す。例えば、f(99)=2、f(100)=3 である。 $\log_{10}2=0.3010$ とする。

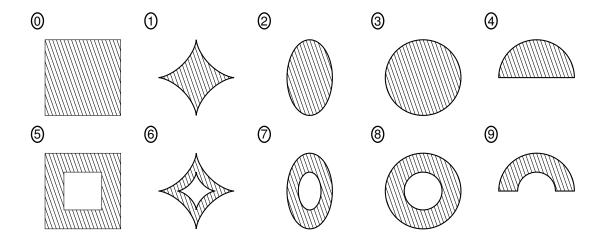
- (1) $f(5^{50}) = \boxed{P1}$ である。
- (2) $\sum\limits_{n=1}^{100}f(\mathbf{n}^2)=$ **ウエオ** である。
- (3) $f(2^n) = 100$ となるような正の整数 n は全部で **カ** 個である。

全 座標空間に平行四辺形 ABCD があり、 $A(1,\ 0,\ 0)$ 、 $B(0,\ 1,\ 2)$ 、 $D(3,\ 1,\ 0)$ である。この平行四辺形 ABCD の周および内部を M とし、M を z 軸のまわりに 1 回転して得られる立体を K とする。

である。

- (2) K を平面 z=t ($0 \le t \le 2$) で切った断面の概形として最も適当なものは τ であり,K を平面 z=1 で切った断面の面積は τ である。
 - ケの解答は該当する解答群から最も適当なものを一つ選べ。
- (3) K の体積は サシ π である。
- (4) 点 P(a, b, c) が K 上を動くとき, $a^2+b^2+c^2$ の最大値は スセ である。

【 ケ の解答群】



2025年度 東京医科大学(前期)

医学部

(略解)

◎ 証明, 図示などは省略

1(1) ア〜イ: $\frac{\sqrt{6}}{2}$

(2) ウ~ク: $\frac{37}{5}x + \frac{11}{5}$

(3) ケ~サ: $\frac{41}{3}$

(4) シス:31

2 アイウ: 256 エオカキ: 6561 クケコサ: 6561

3 アイ:35 ウエオ:358 カ:4

4

(1) ア~ウ: (2, 2, 2) エ~ク: $\left(1 - \frac{1}{2}t, \ \frac{1}{2}t, \ t\right)$

(2) $\tau: 8\pi$

(3) サシ: 16π

(4) スセ:12