2024年度 横浜市立大学(前期)

医学部

試験時間:120分

◎ 全問必答

- 1 以下の各問いに答えなさい。ただし、解答のみを解答用紙の所定の欄に記入しなさい。
- (1) a を 0 ではない実数とします。曲線 $y = ax^2 + 2ax + a + 1$ と直線 y = ax + a が接するとき,a の値を求めなさい。
- (2) 球 $x^2 + y^2 + z^2 2x + 4y + 6z = 35$ と平面 x + 2y + 3z = 2 の共通部分である円の面積を求めなさい。
- (3) O を原点とする座標平面上の曲線 $C: 4x^2+y^2=(x^2+y^2)^2$ の上を点 $P(x,\ y)$ が動いているとき、点 $P(x,\ y)$ の y 座標を最大にするような線分 OP の長さを求めなさい。
- (4) 数列

$$\frac{1}{1},\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \frac{1}{5},\ \frac{2}{4},\ \frac{3}{3},\ \frac{4}{2},\ \frac{5}{1},\ \dots$$

の左から第n番目に出現する項を第n項と呼ぶことにします。たとえば,第4項は $\frac{1}{3}$,第8項は $\frac{2}{3}$ となります。このとき,第200項を求めなさい。

$$\frac{1}{\sin \theta} + \frac{1}{\cos \theta} = \sqrt{3} \cdot \dots \cdot (\$ \text{ A})$$

が成り立つとき,次の各問いに答えなさい。

- (1) $\sin\theta\cos\theta$ の値を求めなさい。
- (2) $\sin^4\theta + \cos^4\theta + \frac{1}{2}\sin 2\theta$ の値を求めなさい。
- (3) (条件 A) に加えて、さらに $-360^\circ \le \theta \le 360^\circ$ かつ $\sin \theta < \cos \theta$ をみたす異なる θ の個数を求めなさい。

- **3** 1から9までの数字を書いたカードが9枚あります。このカードを用いた操作について、次の各問いに答えなさい。ただし、各カードに書かれている数字は1つだけであり、異なるカードに書かれている数字は異なるものとします。
- (1) 9 枚のカードを 1 枚ずつ 9 人に配り,カードの数字をおぼえてから 9 枚の封筒を用意し,それぞれの封筒に 1 枚ずつカードを入れます。封筒に入れたカードの数を読み取ることはできません。この封筒をランダムに 9 人に 1 つずつ再配布します。 9 人のうち,ちょうど 5 人が元のカードを手にする確率を求めなさい。
- (2) 9枚のカードからランダムに 3枚を選びます。このように選ばれたカードの書かれた数字の大きい順に x, y, zとします。x y = y zとなる場合の確率を求めなさい。
- (3) 左から順に a_1 , a_2 , …, a_9 とラベルがつけられている箱に 9 枚のカードをランダムに入れます。ただし,ひとつの箱に入るカードは 1 枚だけです。箱 a_i (i=1, 2, …, 9) の中にあるカードの数字を,箱 a_i それぞれに割り当てられるものとして,その数字で a_i の大小を考えることにしました。たとえば,箱 a_1 にカード 3 が入り,箱 a_5 にカード 1 が入っているときには $a_1 > a_5$ であるなどということにします。 いま, a_i の大小関係が条件
 - $a_1 < a_2 < a_3 < a_4$
 - $a_6 < a_5 < a_4$
 - $a_6 < a_7 < a_8 < a_9$

をみたすとき、このような関係となるカードの並び方は何通りありますか。

- 4 以下の各問いに答えなさい。
- (1) 関数 $\tan x$ の導関数を求めなさい。
- (2) 関数 $\frac{1}{x\sin x + \cos x}$ の導関数を求めなさい。
- (3) 不定積分 $\int \frac{x^2}{(x\sin x + \cos x)^2} dx$ を求めなさい。

2024年度 横浜市立大学(前期)

医学部

(略解)

◎ 証明, 図示などは省略

1

(1) a = 4 (2) 35π (3) $\sqrt{2}$ (4) $\frac{10}{11}$

2

 $(1) -\frac{1}{3}$

(2) $\frac{4}{9}$

(3) 2

3

(1) $\frac{1}{320}$

(2) $\frac{4}{21}$

(3) 379 通り

4

 $(1) \quad \frac{1}{\cos^2 x}$

 $(3) \quad -\frac{x}{\cos x(x\sin x + \cos x)} + \tan x + C$