2024年度 岡山大学(前期)

医学部

試験時間:120分

№ 全問必答

- $oldsymbol{1}$ m, n を正の整数とする。以下の問いに答えよ。
- (1) $x^{3m}-1$ は x^3-1 で割り切れることを示せ。
- (2) $x^n 1$ は $x^2 + x + 1$ で割った余りを求めよ。
- (3) $x^{2024}-1$ を x^2-x+1 で割った余りを求めよ。
- **2** 数直線上を動く点 P がある。点 P は,原点 O を出発して,1 枚のコインを 1 回投げるごとに,表が出たら数直線上を正の向きに 1 だけ進み,裏が出たら数直線上を負の向きに 1 だけ進むものとする。コインの表が出る確率と裏が出る確率はともに $\frac{1}{2}$ であるとし,コインを n 回投げ終えた時点での点 P の座標を x_n とする。コインを 10 回投げるとき,以下の問いに答えよ。
- (1) $x_{10} = 0$ となる確率を求めよ。
- (2) $x_5 \neq 1$ かつ $x_{10} = 0$ となる確率を求めよ。
- (3) $0 \le x_n \le 3$ $(n = 1, 2, \dots, 9)$ かつ $x_{10} = 0$ となる確率を求めよ。
- 図面体 OABC において、OA = OB = OC = 1 とし、 \angle COA = α 、 \angle COB = β 、 \angle AOB = γ と する。ただし、 $0 < \alpha < \frac{\pi}{2}$ 、 $0 < \beta < \frac{\pi}{2}$ とする。辺 OA の延長上に点 D を \overrightarrow{OC} と \overrightarrow{CD} が垂直になるようにとり、辺 OB の延長上に点 E を \overrightarrow{OC} と \overrightarrow{CE} が垂直になるようにとる。 \angle DCE = θ とし、 \overrightarrow{OA} = \overrightarrow{a} 、 \overrightarrow{OB} = \overrightarrow{b} 、 \overrightarrow{OC} = \overrightarrow{c} とするとき、以下の問いに答えよ。
- (1) \overrightarrow{CD} を \overrightarrow{a} , \overrightarrow{c} , $\cos \alpha$ を用いて表せ。また、 \overrightarrow{CE} を \overrightarrow{b} , \overrightarrow{c} , $\cos \beta$ を用いて表せ。
- (2) $\cos \theta \epsilon \sin \alpha$, $\cos \alpha$, $\sin \beta$, $\cos \beta$, $\cos \gamma \epsilon$ を用いて表せ。
- (3) $\cos \gamma = \cos \alpha \cos \beta$, $\beta = \frac{\pi}{2} \alpha$ とする。点 C から平面 DOE に下ろした垂線の足を P とするとき, $\mathrm{CP} = \frac{1}{\tan \gamma}$ となることを示せ。
- 座標平面上で、線分 S: x+y=1 $(0 \le x \le 1)$ と曲線 $C: \sqrt{x}+\sqrt{y}=1$ で囲まれた図形 D を考える。S 上に点(0, 1) からの距離が t となる点 P をとる。このとき、 $0 \le t \le \sqrt{2}$ である。また、点 P を通り、直線 x+y=1 と垂直に交わる直線を ℓ とする。以下の問いに答えよ。
- (1) 直線 ℓ の方程式を t を用いて表せ。
- (2) 直線 ℓ と曲線 C の交点を Q とする。線分 PQ の長さを t を用いて表せ。
- (3) 図形 D を直線 x + y = 1 のまわりに 1 回転してできる回転体の体積を求めよ。

2024年度 岡山大学(前期)

医学部

(略解)

◎ 証明, 図示などは省略

1

(1) 証明は省略

(2) $\begin{cases} 0 & (n \text{ が 3 の倍数のとき}) \\ x-1 & (n \text{ が 3 で割って 1 余るとき}) \\ -x-2 & (n \text{ が 3 で割って 2 余るとき}) \end{cases}$

(3) x-2

2

(1) $\frac{63}{256}$

- (2) $\frac{19}{128}$
- (3) $\frac{17}{512}$

3

- (1) $\overrightarrow{\text{CD}} = \frac{1}{\cos \alpha} \overrightarrow{a} \overrightarrow{c}$, $\overrightarrow{\text{CE}} = \frac{1}{\cos \beta} \overrightarrow{b} \overrightarrow{c}$
- (2) $\cos \theta = \frac{\cos \gamma \cos \alpha \cos \beta}{\sin \alpha \sin \beta}$
- (3) 証明は省略

4

- (1) $y = x + 1 \sqrt{2}t$
- (2) $t \frac{\sqrt{2}}{2}t^2$ (3) $\frac{\sqrt{2}}{15}\pi$