2023年度 兵庫医科大学(前期)

医学部

試験時間:90分

№ 全間必答

- $oldsymbol{1}$ 次の(1)から(5)までの各問いに答えよ。なお,途中の式や考え方等も記入すること。
- (1) 次の不等式を満たす整数 n を求めよ。ただし, $\log_{10}2=0.3010$, $\log_{10}3=0.4771$ とする。 $6^n < 5^{20} < 6^{n+1}$
- (2) 実数 x, y が $x^2 2x + y^2 3 = 0$ を満たすとき,
 - (a) |x| + |y| の最小値とそのときの x および y の値を求めよ。
 - (b) |x| + |y| の最大値とそのときの x および y の値を求めよ。
- (3) xyz 空間において、2点(5, 1, 2)、(-3, 7, 12)を直径の両端とする球面がある。この球面が、z軸から切り取る線分の長さを求めよ。
- (4) 次の定積分を求めよ。

$$\int_0^1 (x+2)(x-1)^9 \, dx$$

(5) 次の文章は、『貯蓄額や所得の多い少ないは「学歴」と関係あるのか?』という記事からの抜粋である。

表は厚生労働省の令和元年国民生活基礎調査から、学歴ごとの平均所得金額(15 歳以上の雇用者 1 人あたり)をまとめたものです。(中略)

男性・女性ともに専門学校・短大・高専卒の方が所得金額が多いのに,総数となると高校・旧制中卒の方が多いのは統計上の謎です。

	小学・	高校・旧	専門学校・短	大学・大
	中学卒業	制中卒業	大・高専卒業	学院卒業
総数	245.2 万円	303.5 万円	278.6 万円	487.4 万円
男性	300.8 万円	404.6 万円	409.0 万円	584.6 万円
女性	160.5 万円	186.1 万円	216.6 万円	291.5 万円

男性の所得金額も女性の所得金額もともに、専門学校・短大・高専卒業の方が、高校・旧制中卒業より 多いのに、総数(男性 + 女性)では、逆転した結果になっている。これはどうしてか、説明しなさい。

- **2** 以下の問いに答えよ。なお、途中の式や考え方等も記入すること。
- (1) 点(3,-2)を,原点を中心として反時計回りに $\frac{\pi}{3}$ だけ回転したときの点の座標を求めよ。
- (2) 3点 A(1, 1), B(3, -2), C について, AB = AC かつ \angle BAC = $\frac{\pi}{3}$ であるとき, 点 C の座標を求めよ。

複素数平面上で原点 O と 2 点 $A(\alpha)$, $B(\beta)$ を頂点とする $\triangle OAB$ がある。直線 OB に関して点 A と対称な点を C, 直線 OA に関して点 B と対称な点を D とする。

- (3) 点 $C(\gamma)$ とするとき, $\gamma = \overline{\left(\frac{\alpha}{\beta}\right)} \beta$ であることを示せ。ただし, $\left(\frac{\alpha}{\beta}\right)$ と共役な複素数を $\overline{\left(\frac{\alpha}{\beta}\right)}$ で表すとする。
- (4) 辺 AB と直線 DC が平行なとき、 $\triangle OAB$ はどのような三角形か、求めよ。
- ③ 以下の問いに答えよ。ただし,n は自然数とし,0!=1 とする。なお途中の式や考え方等も記入すること。
- (1) $S_1 \, \varepsilon$

$$S_1 = \sum_{k=1}^{n} \frac{(k-1)!}{(k+1)!}$$

とするとき、 $\lim_{n\to\infty} S_1$ を求めよ。

(2) $S_2 \epsilon$

$$S_2 = \sum_{k=1}^{n} \frac{(k-1)!}{(k+2)!}$$

とするとき、 $\lim_{n\to\infty} S_2$ を求めよ。

(3) $S_3 \, \varepsilon$

$$S_3 = \sum_{k=1}^{n} \frac{(k-1)!}{(k+3)!}$$

とするとき、 $\lim_{n\to\infty} S_3$ を求めよ。

(4) 次の和 S_p を推測し、それを数学的帰納法によって証明せよ。ただし、p は自然数とする。

$$S_p = \sum_{k=1}^{n} \frac{(k-1)!}{(k+p)!}$$

2023年度 兵庫医科大学(前期)

医学部

(略解)

№ 証明,図示などは省略

1

- (1) 17
- (2) (a) 最小値: 1(x, y) = (-1, 0) (b) 最大値: $1 + 2\sqrt{2}(x, y) = (1 + \sqrt{2}, \pm \sqrt{2})$
- (3) $2\sqrt{33}$
- $(4) -\frac{23}{110}$
- (5) 説明は省略

2

(1)
$$\left(\frac{3}{2} + \sqrt{3}, \ \frac{3\sqrt{3}}{2} - 1\right)$$

- (2) $C\left(2 \pm \frac{3\sqrt{3}}{2}, -\frac{1}{2} \pm \sqrt{3}\right)$ (複号同順)
- (4) $\angle AOB = \frac{\pi}{2}$ の直角三角形または,OA = OB の二等辺三角形

3

- (1) 1
- (2) $\frac{1}{4}$
- (3) $\frac{1}{18}$
- (4) $\frac{1}{p} \left\{ \frac{1}{p!} \frac{1}{(n+1)(n+2)\cdots(n+p)} \right\}$