医学部

2022年度 北海道大学(前期)

医学部

試験時間:120分

№ 全問必答

 $\mathbf{1}$ 0 $\leq a \leq b \leq 1$ をみたす a, b に対し,関数

$$f(x) = |x(x-1)| + |(x-a)(x-b)|$$

を考える。x が実数の範囲を動くとき、f(x) は最小値 m をもつとする。

- (1) x<0 および x>1 では f(x)>m となることを示せ。
- (2) m = f(0) または m = f(1) であることを示せ。
- (3) a, b が $0 \le a \le b \le 1$ をみたして動くとき, m の最大値を求めよ。

a は $a \neq 1$ をみたす正の実数とする。xy 平面上の点 P_1 , P_2 , ……, P_n , …… および Q_1 , Q_2 , ……, Q_n , …… が,すべての自然数 n について

$$\overrightarrow{\mathbf{P}_n \mathbf{P}_{n+1}} = (1-a)\overrightarrow{\mathbf{P}_n \mathbf{Q}_n}, \ \overrightarrow{\mathbf{Q}_n \mathbf{Q}_{n+1}} = \left(0, \frac{a^{-n}}{1-a}\right)$$

をみたしているとする。また、 P_n の座標を (x_n, y_n) とする。

- (1) x_{n+2} を a, x_n , x_{n+1} で表せ。
- (2) $x_1 = 0$, $x_2 = 1$ のとき,数列 $\{x_n\}$ の一般項を求めよ。
- (3) $y_1=rac{a}{(1-a)^2},$ $y_2-y_1=1$ のとき、数列 $\{y_n\}$ の一般項を求めよ。
- 3 以下の問いに答えよ。
- (1) 連立不等式 $x \ge 2$, $2^x \le x^y \le x^2$ の表す領域を xy 平面上に図示せよ。ただし、自然対数の底 e が 2 < e < 3 をみたすことを用いてよい。
- (2) a>0 に対して、連立不等式 $2 \le x \le 6$ 、 $(x^y-2^x)(x^a-x^y) \ge 0$ の表す xy 平面上の領域の面積をS(a) とする。S(a) を最小にする a の値を求めよ。

アルファベットの A と書かれた玉が 1 個,D と書かれた玉が 1 個,H と書かれた玉が 1 個,I と書かれた玉が 1 個,K と書かれた玉が 1 個の玉を円形に並べる。

- (1) 時計回りに HOKKAIDO と並ぶ確率を求めよ。
- (2) 隣り合う子音が存在する確率を求めよ。ここで子音とは、D, H, K の 3 文字(玉は 4 個) のことである。
- (3) 隣り合う子音が存在するとき、それが KK だけである条件つき確率を求めよ。

複素数 z に関する次の 2 つの方程式を考える。ただし, \overline{z} を z と共役な複素数とし,i を虚数単位とする。

$$z\overline{z} = 4 \cdots$$
 $|z| = |z - \sqrt{3} + i| \cdots$

- (1) ①,② それぞれの方程式について、その解z全体が表す図形を複素数平面上に図示せよ。
- (2) ①, ② の共通解となる複素数をすべて求めよ。
- (3) (2) で求めたすべての複素数の積をwとおく。このとき、 w^n が負の実数となるための整数n の必要十分条件を求めよ。

2022年度 北海道大学(前期)

医学部

(略解)

№ 証明,図示などは省略

1

- (1) 証明は省略
- (2) 証明は省略
- (3) $\frac{1}{4}$

2

- (1) $x_{n+2} = (a+1)x_{n+1} ax_n$
- $(2) \quad x_n = \frac{1 a^{n-1}}{1 a}$

(3) $y_n = \frac{a^{n+1} + a^{-n+2}}{(1-a)^2(1+a)}$

3

(1) 図示は省略

(2) a = 2

4

(1) $\frac{1}{1260}$

(2) $\frac{34}{35}$

(3) $\frac{1}{17}$

5

- (1) 図示は省略
- (2) -2i, $\sqrt{3}+i$ (3) n は 6 で割って 3 余る整数