医学部

2017年度 筑波大学(前期)

医学部

試験時間:120分

№ 全問必答

 $oldsymbol{1}$ a を正の実数とする。2 つの関数

$$y = \frac{1}{3}ax^2 - 2a^2x + \frac{7}{3}a^3$$
, $y = -\frac{2}{3}ax^2 + 2a^2x - \frac{2}{3}a^3$

のグラフは、2 点 A, B で交わる。但し、A の x 座標は B の x 座標より小さいとする。また、2 点 A, B を結ぶ線分の垂直二等分線を ℓ とする。

- (1) 2点 A, Bの座標を a を用いて表せ。
- (2) 直線 ℓ の方程式を a を用いて表せ。
- (3) 原点と直線 ℓ の距離 d を a を用いて表せ。また,a>0 の範囲で d を最大にする a の値を求めよ。
- **2** a, b, c を実数とし, β , m をそれぞれ $0<\beta<1$,m>0 を満たす実数とする。また,関数 $f(x)=x^3+ax^2+bx+c$ は $x=\beta$, $-\beta$ で極値をとり, $f(-1)=f(\beta)=-m$, $f(1)=f(-\beta)=m$ を満たすとする。
- (1) a, b, c, および β , m の値を求めよ。
- (2) 関数 $g(x) = x^3 + px^2 + qx + r$ は、 $-1 \le x \le 1$ に対して $f(-1) \le g(x) \le f(1)$ を満たすとする。 h(x) = f(x) g(x) とおくとき、h(-1)、 $h(-\beta)$ 、 $h(\beta)$ 、h(1) それぞれと 0 との大きさを比較することにより、h(x) を求めよ。
- **3** 数列 $\{a_n\}$ が

$$a_1=1,\ a_2=3,\ a_{n+2}=3a_{n+1}{}^2-6a_{n+1}a_n+3a_n{}^2+a_{n+1}$$
 $(n=1,\,2,\,\cdots)$ を満たすとする。また, $b_n=a_{n+1}-a_n$ $(n=1,\,2,\,\cdots)$ とおく。以下の問いに答えよ。

- (1) $b_n \ge 0$ $(n = 1, 2, \dots)$ を示せ。
- (2) b_n $(n=1,2,\cdots)$ の一の位の数が 2 であることを数学的帰納法を用いて証明せよ。
- (3) a_{2017} の一の位の数を求めよ。

4

$$f(x) = 2x^2 - 9x + 14 - \frac{9}{x} + \frac{2}{r^2}$$
 (x>0)

について以下の問いに答えよ。

- (1) 方程式 f(x) = 0 の解をすべて求めよ。
- (2) 関数 f(x) のすべての極値を求めよ。
- (3) 曲線 y = f(x) と x 軸とで囲まれた部分の面積を求めよ。
- xy 平面において,x 座標と y 座標がともに整数である点を格子点という。また,実数 a に対して,a以下の最大の整数を[a]で表す。記号 $[\]$ をガウス記号という。以下の問いではNを自然数とする。
- (1) $n \in 0 \le n \le N$ を満たす整数とする。点(n,0) と点 $\left(n,N\sin\left(\frac{\pi n}{2N}\right)\right)$ を結ぶ線分上にある格子点の 個数をガウス記号を用いて表せ。
- (2) 直線 y=x と、x 軸、および直線 x=N で囲まれた領域(境界を含む)にある格子点の個数を A(N)とおく。このとき A(N) を求めよ。
- (3) 曲線 $y=N\sin\left(\frac{\pi x}{2N}\right)$ ($0\leq x\leq N$) と, x 軸, および直線 x=N で囲まれた領域 (境界を含む) にある格子点の個数を B(N) とおく。(2) の A(N) に対して $\lim_{N\to\infty}\frac{B(N)}{A(N)}$ を求めよ。
- $0 < a < \frac{\pi}{2}$ とする。複素数平面上において,原点を中心とする半径 1 の円の上に異なる 5 点 $P_1(w_1)$, $P_2(w_2)$, $P_3(w_3)$, $P_4(w_4)$, $P_5(w_5)$ が反時計まわりに並んでおり,次の 2 つの条件 (I),(II) を満たすとする。
- (I) $(\cos^2 a)(w_2 w_1)^2 + (\sin^2 a)(w_5 w_1)^2 = 0$ が成り立つ。
- (II) $\frac{w_3}{w_2}$ と $-\frac{w_4}{w_2}$ は方程式 $z^2-\sqrt{3}z+1=0$ の解である。また,五角形 $P_1P_2P_3P_4P_5$ の面積をSとする。以下の問いに答えよ。

- (1) 五角形 $P_1P_2P_3P_4P_5$ の頂点 P_1 における内角 $\angle P_5P_1P_2$ を求めよ。
- (2) Sをaを用いて表せ。
- (3) $R = |w_1 + w_2 + w_3 + w_4 + w_5|$ とする。このとき, $R^2 + 2S$ は a の値によらないことを示せ。

2017年度 筑波大学(前期)

医学部

(略解)

№ 証明,図示などは省略

1

- $(2) \quad 3x 2a^2y 6a = 0$
- (1) $A\left(a, \frac{2}{3}a^3\right)$, $B\left(3a, -\frac{2}{3}a^3\right)$ (3) $d = \frac{6a}{\sqrt{4a^4 + 9}}$, $a = \frac{\sqrt{6}}{2}$

2

(1) a = 0, $b = -\frac{3}{4}$, c = 0, $\beta = \frac{1}{2}$, $m = \frac{1}{4}$ (2) h(x) = 0

3

- (1) 証明は省略
- (2) 証明は省略 (3) 3

4

- (1) $x = 1, 2, \frac{1}{2}$ (2) 極大値: 0,極小値: $-\frac{1}{8}$ (3) $18 \log 2 \frac{99}{8}$

5

- (1) $\left[N \sin\left(\frac{\pi n}{2N}\right) \right] + 1$ 個 (2) $A(N) = \frac{(N+1)(N+2)}{2}$ (3) $\frac{4}{\pi}$

6

 $(1) \quad \frac{\pi}{2}$

- (2) $S = \sin 2a + \frac{2 + \sqrt{3}}{4}$ (3) 証明は省略