2017年度 山形大学(前期)

医学部

試験時間:120分

№ 全問必答

- $oxed{1}$ 大中小 $oxed{3}$ 個のさいころを同時に投げる。出る目の和を $oxed{S}$ で表すとき,次の問に答えよ。
- (1) 出る目の最小値が2になる確率を求めよ。
- (2) S = 4 または S = 17 になる確率を求めよ。
- (3) $5 \le S \le 16$ になる確率を求めよ。
- (4) 大中小それぞれのさいころの出る目を a, b, c とする。座標平面上の 3 点 A(a,0), B(-b,0), $C(0,c^2)$ に対し, \triangle ABC の面積を T とするとき, $T \le 9$ になる確率を求めよ。
- **2** \triangle ABC において、AB = 6、BC = 5、CA = 4 とする。辺 BC の垂直二等分線と辺 CA の垂直二等分線との交点を D、 \angle C の二等分線と辺 AB との交点を E とする。また、 $\overrightarrow{CA} = \overrightarrow{a}$ 、 $\overrightarrow{CB} = \overrightarrow{b}$ とする。このとき、次の問に答えよ。
- (1) 内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ を求めよ。
- (2) \overrightarrow{CE} を \overrightarrow{a} と \overrightarrow{b} で表せ。また、 $|\overrightarrow{CE}|$ を求めよ。
- (3) \overrightarrow{CD} を \overrightarrow{a} と \overrightarrow{b} で表せ。また、内積 $\overrightarrow{CD} \cdot \overrightarrow{CE}$ を求めよ。
- (4) 点 D から線分 CE に下ろした垂線と線分 CE との交点を P とする。 \overrightarrow{CP} を \overrightarrow{a} と \overrightarrow{b} で表せ。
- 関数 $y=\sqrt{x^2+1}$ のグラフを C とする。p>0 とし,点 $\mathrm{P}(p,\sqrt{p^2+1})$ における曲線 C の接線を L,x 軸と直線 L との交点を点 $\mathrm{A}(a,0)$ とする。このとき,次の間に答えよ。
- (1) 直線 L の方程式と点 A の x 座標 a を p を用いて表せ。
- (2) 曲線 C と直線 L および y 軸で囲まれた図形を, x 軸のまわりに 1 回転してできる回転体の体積 V を p を用いて表せ。
- (3) 関数 $f(x) = x\sqrt{x^2 + 1} + \log(x + \sqrt{x^2 + 1})$ を微分せよ。
- (4) p=2 のとき、直線 x=a と曲線 C および直線 L で囲まれた図形の面積 S を求めよ。

- 方程式 $(z-i)^4 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ の解を、虚部の大きい方から順に z_1 、 z_2 、 z_3 、 z_4 とする。このとき、次の間に答えよ。
- (1) 複素数 z_1 , z_2 , z_3 , z_4 を求めよ。
- (2) 複素数 $\left\{ (3-\sqrt{3}) \frac{z_1}{z_2} \right\}^{10}$ を求めよ。
- (3) 実数 s に対して, $\frac{|z_3-s|}{|z_2-s|}$ が最大になる s の値を求めよ。

2017年度 山形大学(前期)

医学部

(略解)

◎ 証明, 図示などは省略

1

- (1) $\frac{61}{216}$ (2) $\frac{1}{36}$
- (3) $\frac{26}{27}$ (4) $\frac{43}{216}$

2

- $(1) \quad \frac{5}{2}$ $(3) \quad \overrightarrow{CD} = \frac{3}{7} \overrightarrow{a} + \frac{16}{35} \overrightarrow{b}, \quad \overrightarrow{CD} \cdot \overrightarrow{CE} = 10$ $(2) \quad \overrightarrow{CE} = \frac{5}{9} \overrightarrow{a} + \frac{4}{9} \overrightarrow{b}, \quad |\overrightarrow{CE}| = \frac{10}{3}$ $(4) \quad \overrightarrow{CP} = \frac{1}{2} \overrightarrow{a} + \frac{2}{5} \overrightarrow{b}$

3

(1) $y = \frac{p}{\sqrt{p^2 + 1}}x + \frac{1}{\sqrt{p^2 + 1}}, \ a = -\frac{1}{p}$ (2) $V = \frac{\pi p^3}{3(p^2 + 1)}$ (3) $f'(x) = 2\sqrt{x^2 + 1}$ (4) $S = \frac{1}{2}\log\frac{7 + 3\sqrt{5}}{2} - \frac{\sqrt{5}}{8}$

4

 $(1) \quad z_1 = -\frac{1}{2} + \left(1 + \frac{\sqrt{3}}{2}\right)i, \quad z_2 = \frac{\sqrt{3}}{2} + \frac{3}{2}i, \quad z_3 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i, \quad z_4 = \frac{1}{2} + \left(1 - \frac{\sqrt{3}}{2}\right)i$