2014年度 大阪大学(前期)

医学部

試験時間:150分

◎ 全問必答

1 実数 a, b, c, d, e に対して、座標平面上の点 A(a, b)、B(c, d)、C(e, 0) をとる。ただし点 A と点 B はどちらも原点 O(0, 0) とは異なる点とする。このとき、実数 s, t で

$$\overrightarrow{SOA} + t\overrightarrow{OB} = \overrightarrow{OC}$$

を満たすものが存在するための、a, b, c, d, e についての必要十分条件を求めよ。

- **2** t>0 において定義された関数 f(t) は次の条件 (ア) (イ) を満たす。
 - (r) t>0 のとき, すべての実数 x に対して不等式

$$t \cdot \frac{e^x + e^{-x}}{2} + f(t) \ge 1 + x$$

が成り立つ。

(4) t>0 に対して,等式

$$t \cdot \frac{e^x + e^{-x}}{2} + f(t) = 1 + x$$

を満たす実数xが存在する。

このとき, f(t) を求めよ。

- **3** $\sum_{n=1}^{40000} \frac{1}{\sqrt{n}}$ の整数部分を求めよ。
- 半径 1 の 2 つの球 S_1 と S_2 が 1 点で接している。互いに重なる部分のない等しい半径を持つ n 個 $(n \ge 3)$ の球 T_1 , T_2 , \cdots , T_n があり,次の条件 (r) (A) を満たす。
 - (r) T_i は S_1 , S_2 にそれぞれ 1 点で接している $(i=1, 2, \cdots, n)$ 。
- (4) T_i は T_{i+1} に 1 点で接しており $(i=1,\ 2,\ \cdots,\ n-1)$,そして T_n は T_1 に 1 点で接している。 このとき,以下の問いに答えよ。
- (1) T_1 , T_2 , …, T_n の共通の半径 r_n を求めよ。
- (2) S_1 と S_2 の中心を結ぶ直線のまわりに T_1 を回転してできる回転体の体積を V_n とし, T_1 , T_2 , …, T_n の体積の和を W_n とするとき,極限

$$\lim_{n\to\infty}\frac{W_n}{V_n}$$

を求めよ。

- **5** さいころを繰り返し投げ、n回目に出た目を X_n とする。n回目までに出た目の積 $X_1X_2\cdots X_n$ を T_n で表す。 T_n を 5 で割った余りが 1 である確率を p_n とし、余りが 2、3、4 のいずれかである確率を q_n とする。
- (1) $p_n + q_n$ を求めよ。
- (2) p_{n+1} を p_n と n を用いて表せ。
- (3) $r_n = \left(\frac{6}{5}\right)^n p_n$ とおいて r_n を求めることにより, p_n を n の式で表せ。

2014年度 大阪大学(前期)

医学部

(略解)

証明、図示などは省略

- 1 $ad - bc \neq 0$ または e = 0 または b = d = 0
- 2 $f(t) = 1 + \log \frac{1 + \sqrt{t^2 + 1}}{t} \sqrt{t^2 + 1}$
- 3 398

4

 $(1) \quad r_n = 2 \tan^2 \frac{\pi}{n}$

(2) $\frac{2}{3}$

5

 $(1) \quad \left(\frac{5}{6}\right)^n$

- (2) $p_{n+1} = \frac{1}{6}p_n + \frac{1}{6}\left(\frac{5}{6}\right)^n$ (3) $p_n = \frac{1}{4}\left(\frac{5}{6}\right)^n + \frac{3}{4}\left(\frac{1}{6}\right)^n$