■2013 年 三重大学(前期) ▶

♠ 医学部

- **1** 平面上のベクトル $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ が $|\stackrel{\rightarrow}{a}+2\stackrel{\rightarrow}{b}|=2$, $|\stackrel{\rightarrow}{2a}-\stackrel{\rightarrow}{b}|=2$ を満たすように動く . ベクトル $\stackrel{\rightarrow}{a}+2\stackrel{\rightarrow}{b}$, $2\stackrel{\rightarrow}{a}-\stackrel{\rightarrow}{b}$ を , それぞれ $\stackrel{\rightarrow}{x}$, $\stackrel{\rightarrow}{y}$ とし , $\stackrel{\rightarrow}{x}$ と $\stackrel{\rightarrow}{y}$ がなす角を θ とする . 以下の問いに答えよ .
- (1) \overrightarrow{a} , \overrightarrow{b} を \overrightarrow{x} , \overrightarrow{y} で表せ.
- (2) $\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}$ を $\stackrel{\rightarrow}{x},\stackrel{\rightarrow}{y}$ を用いて表し , $\left|\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}\right|^2$ を θ で表せ .
- (3) $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix}$ の最大値と最小値を求めよ.また,そのときの θ を,それぞれ求めよ.
- **2** θ を $0 < \theta < \frac{\pi}{6}$ となる実数とし,平面上に 3 点 O(0,0), $P(\cos\theta,\sin\theta)$, $Q(\cos3\theta,-\sin3\theta)$ をとる.さらに線分 PQ と x 軸との交点を R とする.以下の問いに答えよ.
- (1) 加法定理を用いて $\cos 3\theta$ を $\cos \theta$ だけで表す式を導け. 同様に $\sin 3\theta$ を $\sin \theta$ だけで表す式を導け.
- (2) PR:RQ=5:11 のとき $,\sin\theta,\cos\theta$ の値を求めよ .
- (3) (2) の条件下で △POR の面積を求めよ.
- 正四面体 ABCD を考える.点 P は , 時刻 0 では頂点 A にあり , 1 秒ごとに , 今いる頂点から他の 3 頂点のいずれかに , 等しい確率で動くとする .n を 0 以上の整数とし , 点 P が n 秒後に A , B , C , D にある確率 e , それぞれ e , e
- (1) $n \ge 1$ に対し $q_n = r_n = s_n$ となることを数学的帰納法で証明せよ.
- (2) $n \ge 1$ に対し p_n, q_n を p_{n-1}, q_{n-1} で表せ.ただし, $p_0 = 1, q_0 = 0$ とする.
- (3) $c_n = p_n q_n$ とおいて c_n の一般項を求めよ.
- (4) p_n の一般項を求めよ.
- 4 e で自然対数の底を表す.関数 f(x) を

$$f(x) = \log(x + \sqrt{x^2 + e})$$

で定めるとき,以下の問いに答えよ.

- (1) 関数 f(x) を微分せよ.また f'(x) が偶関数であることを示せ.
- (2) 定積分

$$\int_{-1}^{1} f(x) \cos\left(\frac{\pi}{2}x\right) dx$$

を求めよ.

(3) 数列 $\{a_n\}$ を

$$a_n = \int_{-1}^{1} x^{2n} f(x) \cos\left(\frac{\pi}{2}x\right) dx \quad (n = 1, 2, 3, \dots)$$

で定める .n を 2 以上とするとき $,a_n$ と a_{n-1} の間に成り立つ関係式を求めよ .

▲ 工学部

- 1 医学部 1 と同じ.
- 2 医学部 2 と同じ.

- 正四面体 ABCD を考える.点 P は,時刻 0 では頂点 A にあり,1 秒ごとに,今いる頂点から他の 3 頂点のいずれかに,等しい確率で動くとする.n を 0 以上の整数とし,点 P が n 秒後に A にある確率を p_n ,B にある確率を q_n とする.このとき,n 秒後に C にある確率も,D にある確率も q_n となる.このことに注意して,以下の問いに答えよ.ただし, $p_0=1$, $q_0=0$ とする.
- (1) $n \ge 1$ に対し p_n , q_n を p_{n-1} , q_{n-1} で表せ.
- (2) $c_n = p_n q_n$ とおいて c_n の一般項を求めよ.
- (3) p_n の一般項を求めよ.
- $y^2 = (x-2)^2(x+1)$ で決まる曲線を C とする.以下の問いに答えよ.
- (1) 関数 $y = (x-2)\sqrt{x+1}$ の増減を調べ,関数のグラフの概形をかけ.
- (2) 曲線 *C* の概形をかけ.
- (3) 曲線 *C* で囲まれる部分の面積を求めよ.

▲ 人文・教育・生物資源学部

➡注:人文学部は, 1~4 必答.教育・生物資源学部は, 1, 2, 4 必答・3, 5 から1 題選択.

- a,b を実数とし ,i を虚数単位とする .2 次方程式 $x^2+ax+b=0$ の解の 1 つが $1-\sqrt{2}i$ であるとき以下の問いに答えよ .
- (1) a, b の値を求めよ.
- (2) 2 次関数 $y = x^2 + ax + b$ のグラフの軸と頂点を求め、そのグラフをかけ、
- (3) 曲線 $y = x^2 + ax + b$ と直線 y = 3 とで囲まれた部分の面積を求めよ.
- 2 医学部 2 と同じ.
- 正四面体 ABCD を考える.点 P は,時刻 0 では頂点 A にあり,1 秒ごとに,今いる頂点から他の 3 頂点のいずれかに動くとする.n を正の整数として,A から出発して n 秒後に A に戻る経路の数を α_n ,A から出発して n 秒後に B に到達する経路の数を β_n とする.このとき,A から出発して n 秒後に C に到達する経路の数も,D に到達する経路の数も,B となる.このことに注意して,以下の問いに答えよ.ただし,B0 B1 とする.
- (1) α_2 , β_2 , $\alpha_2 + 3\beta_2$, α_3 , β_3 , $\alpha_3 + 3\beta_3$ を求めよ.
- (2) $n \ge 1$ に対し α_n , β_n を α_{n-1} , β_{n-1} で表せ.
- (3) $c_n = \alpha_n \beta_n$ とおいて c_n の一般項を求めよ.
- (4) α_n の一般項を求めよ.
- 4 医学部 1 と同じ.
- **5** 関数 $y = xe^{-2x}$ を考える.
- (1) y', y'' を求めよ.
- (2) この関数の $0 \le x \le 2$ における増減 , 凹凸を調べ , グラフの概形をかけ .

出題範囲と難易度

♣ 医学部

- 1 標準 B ベクトル(平面)
- **2** 標準 II 三角関数
- **3** 標準 A 確率・B 数列
- 4 | *難 | III 微分法の応用・積分法の応用

♣ 工学部

- 1 標準 B ベクトル(平面)
- 2 標準 II 三角関数
- **3** 標準 A 確率・B 数列
- 4 標準 III 微分法の応用・積分法の応用

♣ 人文・教育・生物資源学部

- 1 基本 II 複素数と方程式・微分積分
- 2 標準 II 三角関数
- **3** 標準 A 確率・B 数列
- 4 標準 B ベクトル(平面)
- **5** 基本 III 微分法

略解

◇ 医学部

1 (1)
$$\vec{a} = \frac{1}{5}\vec{x} + \frac{2}{5}\vec{y}, \vec{b} = \frac{2}{5}\vec{x} - \frac{1}{5}\vec{y}$$

(2)
$$\vec{a} + \vec{b} = \frac{3}{5}\vec{x} + \frac{1}{5}\vec{y}$$
, $|\vec{a} + \vec{b}|^2 = \frac{8}{25}(5 + 3\cos\theta)$

(3) 最大値:
$$\frac{8}{5}$$
 ($\theta = 0$),最小値: $\frac{4}{5}$ ($\theta = \pi$)

$$2 \quad (1) \quad \cos 3\theta = 4\cos^3 \theta - 3\cos \theta, \quad \sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

(2)
$$\sin \theta = \frac{1}{\sqrt{5}}$$
, $\cos \theta = \frac{2}{\sqrt{5}}$

(3)
$$\frac{3}{20}$$

(2)
$$p_n = q_{n-1}, \quad q_n = \frac{1}{3} p_{n-1} + \frac{2}{3} q_{n-1}$$

(3) $c_n = \left(-\frac{1}{3}\right)^n$

$$(3) \quad c_n = \left(-\frac{1}{3}\right)^n$$

(4)
$$p_n = \frac{1}{4} \left\{ 1 - \left(-\frac{1}{3} \right)^{n-1} \right\}$$

4 (1)
$$f'(x) = \frac{1}{\sqrt{x^2 + e}}$$
, 証明は省略

$$(2) \quad \frac{2}{\pi}$$

(3)
$$a_n = -\frac{8n(2n-1)}{\pi^2}a_{n-1} + \frac{2}{\pi}$$

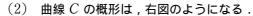
◇ 工学部

(1)
$$p_n = q_{n-1}, q_n = \frac{1}{3}p_{n-1} + \frac{2}{3}q_{n-1}$$

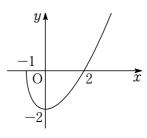
$$(2) \quad c_n = \left(-\frac{1}{3}\right)^n$$

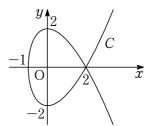
(3)
$$p_n = \frac{1}{4} \left\{ 1 - \left(-\frac{1}{3} \right)^{n-1} \right\}$$

\boldsymbol{x}	-1		0	
y'		_	0	+
y	0	`*	-2	1



(3)
$$\frac{24\sqrt{3}}{5}$$





◇ 教育・生物資源学部

- **1** (1) a = -2, b = 3
 - (2) 軸の方程式:x = 1, 頂点 (1, 2) グラフは右図のようになる.
 - (3) $\frac{4}{3}$
- 2 医学部 2 と同じ.
- (1) $\alpha_2 = 3$, $\alpha_3 = 6$, $\beta_2 = 2$, $\beta_3 = 7$, $\alpha_2 + 3\beta_2 = 9$, $\alpha_3 + 3\beta_3 = 27$
 - (2) $\alpha_n = 3\beta_{n-1}, \quad \beta_n = \alpha_{n-1} + 2\beta_{n-1}$
 - (3) $c_n = (-1)^n$
 - (4) $\alpha_n = \frac{3^n + 3 \cdot (-1)^n}{4}$
- 4 医学部 1 と同じ.
- **5** (1) $y' = (1-2x)e^{-2x}$, $y'' = 4(x-1)e^{-2x}$
 - (2) グラフは,右図のようになる.

x	0		$\frac{1}{2}$	•••	1		2
y'		+	0	_		-	
$y^{\prime\prime}$		_			0	+	
y	0	~	$\frac{1}{2e}$	7	$\frac{1}{e^2}$	\	$\frac{2}{e^4}$

