■2005 年 熊本大学(前期) ▶

♠ 理系学部

- 座標空間内に 4 点 A(3,0,0), B(0,2,1), C(0,2,0), D(3,2,0) を考え 線分 CD 上の点 P(x,2,0) に対して , 三角形 PAB の面積を S とするとき , 次の問いに答えよ .
- (1) $\angle APB = \theta$ とするとき, $\cos \theta$ を x で表せ.
- (2) S の最小値を求めよ.
- $oxed{2}$ ボタンを 1 回押すごとに , 画面に $1,\,2,\,3,\,4$ のいずれかの数を表示する機械がある.この機械が数 X を表示する確率は次のとおりである.

X	1	2	3	4
確率	2 <i>a</i>	b	b	a

次の問いに答えよ.

- (1) *b* を *a* で表せ.
- (2) ボタンを 2 回押したときに表示される数のうち小さくないほうの数を Z とするとき , Z の期待値 m を a で表せ .
- (3) *m* を最大にする *a* の値を求めよ.
- **る** 座標平面において,x 軸上の点列 $\{P_n\}$ と曲線 $C:y=\frac{1}{x^2}$ 上の点列 $\{Q_n\}$ を次のように定める. $P_1(a,0)~(a>0)$ とする. $P_n~(n\ge 1)$ が定まったとき, P_n を通り y 軸に平行な直線と C との交点を Q_n とする. Q_n における C の接線と x 軸との交点を P_{n+1} とする.

次の問いに答えよ.

- (1) $P_n(a_n, 0)$ とするとき, a_n を a で表せ.
- (2) 三角形 $\mathrm{P}_n\mathrm{P}_{n+1}\mathrm{Q}_n$ の面積を S_n とするとき , $\sum\limits_{n=1}^\infty S_n$ を a で表せ .
- 平面上の点の直交座標を(x,y)、極座標を (r,θ) とする.極方程式 $r=f(\theta)$ によって表される曲線 C について,次の問いに答えよ.
- (1) 曲線 C 上の点 (x,y) について, $\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2$ を $f(\theta)$, $f'(\theta)$ を用いて表せ.
- (2) $f(heta)=\sin^3rac{ heta}{3}$ のとき,曲線 C の $0\leq heta\leqrac{\pi}{2}$ の部分の長さを求めよ.

♠ 文系学部

- 2 次の問いに答えよ.
- (1) 三角関数の加法定理またはド・モアブルの定理を用いて,任意の角 θ に対し,次の等式が成り立つことを証明せよ.

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

- (2) $\theta=18^\circ$ のとき , $\cos 2\theta=\sin 3\theta$ が成り立つことを示せ .
- (3) $\sin 18^{\circ}$ の値を求めよ.
- 3 理系学部 1 と同じ.
- 4 理系学部 2 と同じ.

出題範囲と難易度

- ♣ 理系学部
 - **1** 基本 B ベクトル (空間)
 - **2** 標準 **I** 確率
 - 3 標準 III 数列の極限
 - 4 標準 C いろいろな曲線・III 積分法の応用
- ♣ 文系学部
 - 1 基本 II 図形と方程式
 - 2 標準 II 三角関数
 - 3 基本 B ベクトル (空間)
 - 4 標準 I 確率

◇ 理系学部

1 (1)
$$\cos \theta = \frac{x^2 - 3x}{\sqrt{(x^2 - 6x + 13)(x^2 + 1)}}$$

$$\sqrt{(x^2 - 6x + 13)}$$
(2) 最小値: $\frac{\sqrt{70}}{5}$ $\left(x = \frac{3}{5}\right)$
(2) $b = \frac{1 - 3a}{2}$
(2) $m = -\frac{21}{4}a^2 + \frac{3}{2}a + \frac{11}{4}$
(3) $a = \frac{1}{7}$
(1) $a_n = a\left(\frac{3}{2}\right)^{n-1}$

2 (1)
$$b = \frac{1-3a}{2}$$

(2)
$$m = -\frac{21}{4}a^2 + \frac{3}{2}a + \frac{11}{4}$$

(3)
$$a = \frac{1}{7}$$

3 (1)
$$a_n = a \left(\frac{3}{2}\right)^{n-1}$$

(2)
$$\sum_{n=1}^{\infty} S_n = \frac{3}{4a}$$

$$(1) \quad \left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = (f'(\theta))^2 + (f(\theta))^2$$

(2)
$$\frac{\pi}{4} - \frac{3\sqrt{3}}{8}$$

◇ 文系学部

直線:
$$y = -\frac{1}{4}$$

(3)
$$\sin 18^{\circ} = \frac{\sqrt{5} - 1}{4}$$