■2010 年 広島大学(前期) ▶

▲ 理系学部

- 1 行列 $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ の表す 1 次変換 f によって , 点 $P_1(1,0)$ が点 $P_2(0,3)$ に移され , 点 P_2 が 点 P_3 に , 点 P_3 が点 $P_1(1,0)$ にそれぞれ移されるとする . 次の問いに答えよ . ただし , a,b,c,d は実数である .
- (1) 行列 *A* を求めよ.
- (2) 自然数 n に対して A^n を求めよ.
- (3) O(0,0) とする. 点 $P(\cos\theta,\sin\theta)$ が f によって点 Q に移されるとする. $0 \le \theta \le 2\pi$ のとき,ベクトル \overrightarrow{OP} と \overrightarrow{OQ} の内積 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ のとり得る値の範囲を求めよ.
- p, a を実数の定数とする.多項式 $P(x) = x^3 (2p+a)x^2 + (2ap+1)x a$ を x-3 で割った余りが 10-6p であり,3 次方程式 P(x) = 0 の実数解は a のみとする.次の問いに答えよ.
- (1) 実数の範囲で P(x) を因数分解せよ.
- (2) a の値を求めよ.
- (3) 関数 y = P(x) が極値をもたないときの p の値を求めよ.
- **3** t>1 を満たす実数 t に対して , $S(t)=\int_0^1 |xe^x-tx|\,dx$ とおくとき , 次の問いに答えよ .
- (1) $0 \le x \le 1$ の範囲で , 方程式 $xe^x = tx$ を満たす x をすべて求めよ .
- (2) S(t) を求めよ.
- (3) S(t) を最小にする t の値を求めよ.
- 4 n は 2 以上の自然数とする.袋の中に 1 から n までの数字が 1 つずつ書かれた n 個の玉が入っている.この袋から無作為に玉を 1 個取り出し,それに書かれている数を自分の得点としたのち,取り出した玉を袋に戻す.この試行を A, B, C の 3 人が順に行い,3 人の中で最大の得点の人を勝者とする.たとえば,A, B, C の 4 会にある.勝者が 4, 4, 4 のときは 4 と 4 のときは 4 のときは 4 と 4 のときは 4 のときな 4 のとな 4 のときな 4 のときな
- (1) 勝者が3人である確率 $P_n(3)$ をnを用いて表せ.
- (2) n=3 の場合に勝者が 2 人である確率 $P_3(2)$ を求めよ.
- (3) 勝者が1人である確率 $P_n(1)$ をnを用いて表せ.
- (4) $P_n(1) \ge 0.9$ となる最小の n を求めよ.
- 4 で割ると余りが1 である自然数全体の集合をA とする. すなわち, $A = \{4k+1 \mid k \text{ は } 0 \text{ 以上の整数 } \}$

とする.次の問いに答えよ.

- (1) x および y が A に属するならば , その積 xy も A に属することを証明せよ .
- (2) 0以上の偶数 m に対して $,3^m$ は A に属することを証明せよ .
- (3) m,n を 0 以上の整数とする .m+n が偶数ならば 3^m7^n は A に属し .m+n が奇数ならば 3^m7^n は A に属さないことを証明せよ .
- (4) m,n を 0 以上の整数とする $.3^{2m+1}7^{2n+1}$ の正の約数のうち A に属する数全体の和を m と n を用いて表せ .

♠ 文系学部

- 1 k は定数で,k>0 とする.曲線 $C:y=kx^2~(x\geqq0)$ と 2 つの直線 $\ell:y=kx+rac{1}{k}$, $m:y=-kx+rac{1}{k}$ との交点の x 座標をそれぞれ lpha,eta(0<eta<lpha)とするとき,次の問いに答えよ.
- (1) $\alpha \beta$ の値を求めよ.
- (2) $\alpha\beta$, $\alpha^2 + \beta^2$ および $\alpha^3 \beta^3$ を k を用いて表せ.
- (3) 曲線 C と 2 直線 ℓ , m とで囲まれた部分の面積を最小にする k の値を求めよ.また,そのときの面積を求めよ.
- **2** 座標平面上に点 $\mathrm{O}(0,\,0)$ と点 $\mathrm{P}(4,\,3)$ をとる.不等式 $(x-5)^2+(y-10)^2 \le 16$ の表す領域を D とする.次の問いに答えよ.
- (1) k は定数とする.直線 $y=-\frac{4}{3}x+k$ 上の点を Q とするとき,ベクトル \overrightarrow{OQ} と \overrightarrow{OP} の内積 $\overrightarrow{OQ}\cdot\overrightarrow{OP}$ を k を用いて表せ.
- (2) 点 R が D 全体を動くとき,ベクトル \overrightarrow{OP} と \overrightarrow{OR} の内積 $\overrightarrow{OP} \cdot \overrightarrow{OR}$ の最大値および最小値を求めよ.
- 3 理系学部 2 と同じ.
- n は 2 以上の自然数とする.袋の中に 1 から n までの数字が 1 つずつ書かれた n 個の玉が入っている.この袋から無作為に玉を 1 個取り出し,それに書かれている数を自分の得点としたのち,取り出した玉を袋に戻す.この試行を A, B, C の 3 人が順に行い,3 人の中で最大の得点の人を勝者とする.たとえば,A, B, C の 4 会にある.勝者が 4, 4, 4 のときは 4 と 4 のときは 4 のときな 4
- (1) 勝者が 3 人である確率 $P_n(3)$ を n を用いて表せ.
- (2) n=3 の場合に勝者が2 人である確率 $P_3(2)$ を求めよ.
- (3) 勝者が1人である確率 $P_n(1)$ をnを用いて表せ.
- 5 次の問いに答えよ.
- (1) x, y が 4 で割ると 1 余る自然数ならば , 積 xy も 4 で割ると 1 余ることを証明せよ .
- (2) 0以上の偶数 n に対して $,3^n$ を 4 で割ると 1 余ることを証明せよ .
- (3) 1以上の奇数 n に対して $,3^n$ を 4 で割った余りが 1 でないことを証明せよ .
- (4) m を 0 以上の整数とする $.3^{2m}$ の正の約数のうち 4 で割ると 1 余る数全体の和を m を用いて表せ .

出題範囲と難易度

♣ 理系学部

- 1 標準 C 行列・1 次変換
- 2 標準 II 高次方程式・微分積分
- 3 標準 III 積分法の応用
- 4 標準 A 確率
- 5 | * 難 | I 集合と論理・B 数列

♣ 文系学部

- 1 標準 II 図形と方程式・微分積分
- **2** 標準 II 図形と方程式・B ベクトル (平面)
- 3 標準 II 複素数と方程式・微分積分
- 4 標準 A 確率
- **5** 標準 **B** 数列

略解

◇ 理系学部

(2) k を自然数として,

$$n=3k$$
 のとき $A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $n=3k-2$ のとき $A=\begin{pmatrix} 0 & -\frac{1}{3} \\ 3 & -1 \end{pmatrix}$ $n=3k-1$ のとき $A=\begin{pmatrix} -1 & \frac{1}{3} \\ -3 & 0 \end{pmatrix}$

(3)
$$-\frac{\sqrt{73}}{6} - \frac{1}{2} \leq \overrightarrow{OP} \cdot \overrightarrow{OQ} \leq \frac{\sqrt{73}}{6} - \frac{1}{2}$$

2 (1)
$$P(x) = (x-a)(x^2-2px+1)$$

(2)
$$a = 2$$

(3)
$$p = \frac{1}{2}$$

$$t > e$$
 のとき $x = 0$ $1 < t \le e$ のとき $x = 0$, $\log t$

(2)

$$S(t) = \begin{cases} \frac{1}{2}t - 1 & (t > e) \\ t(\log t)^2 - 2t\log t + \frac{3}{2}t - 1 & (1 < t \le e) \end{cases}$$

(3)
$$t = e^{\frac{1}{\sqrt{2}}}$$

4 (1)
$$P_n(3) = \frac{1}{n^2}$$

(2)
$$P_3(2) = \frac{1}{3}$$

(3)
$$P_n(1) = \frac{(n-1)(2n-1)}{2n^2}$$

(4)
$$n = 15$$

- (2) 証明は省略
- (3) 証明は省略

$$(4) \quad \frac{11}{192}(3^{2m+2}-1)(7^{2n+2}-1)$$

◇ 文系学部

- **1** (1) $\alpha \beta = 1$
 - (2) $\alpha\beta = \frac{1}{k^2}$, $\alpha^2 + \beta^2 = 1 + \frac{2}{k^2}$, $\alpha^3 \beta^3 = 1 + \frac{3}{k^2}$
 - (3) $k=\sqrt{6}$ のとき,面積の最小値は $\frac{\sqrt{6}}{3}$
- **2** (1) 3*k*
 - (2) 最大値:70 $\left(R\left(\frac{41}{5}, \frac{62}{5}\right)\right)$,最小値:30 $\left(R\left(\frac{9}{5}, \frac{38}{5}\right)\right)$
- 理系学部 2 同じ. 3
- **4** (1) $P_n(3) = \frac{1}{n^2}$

 - (2) $P_3(2) = \frac{1}{3}$ (3) $P_n(1) = \frac{(n-1)(2n-1)}{2n^2}$
- 5 (1) 証明は省略
 - (2) 証明は省略
 - (3) 証明は省略
 - (4) $\frac{9^{m+1}-1}{8}$