問題 ('05 岩手医大)

【難易度】 … 標準

1 つのさいころを 30 回投げたときに 1 の目が k 回出る確率を P_k とする $(0 \le k \le 30)$. このとき , 次の問い に答えよ .

- (1) $\frac{P_{k+1}}{P_k}$ を求めよ . $(k=0,\,1,\,2,\,\cdots,\,29)$
- (2) $P_{k+1} > P_k$ をみたす k の最大値を求めよ.
- (3) P_k の値が最大となるときの k の値を求めよ . また ,2 番目に大きい値になるときの k の値を求めよ .

【テーマ】: 確率の最大値

— 方針-

 P_k は階乗を含む式になるので,このままでは最大値を求めることが困難です.そこで,問題文の設問にあるように $\frac{P_{k+1}}{P_k}$ を計算し,1 との大小を比較して P_k が最大になるときを求めます.

誘導形式とはいえ,本質を理解していなければ何をしているのかよくわからないでしょう. $\overline{方針}$ にも書いたように, P_k が階乗を含む式になるので,このままでは P_k の最大値が求められません.そこで,次のように考えて最大となる k を決定します.

$$P_{k+1} < P_k \iff \frac{P_{k+1}}{P_k} < 1 \quad \cdots$$

$$P_{k+1} = P_k \iff \frac{P_{k+1}}{P_k} = 1 \quad \cdots \cdot 2$$

$$P_{k+1} > P_k \iff \frac{P_{k+1}}{P_k} > 1 \quad \cdots \quad 3$$

このように, $\frac{P_{k+1}}{P_k}$ と 1 の大小関係を調べることで, P_{k+1} と P_k の大小関係がわかるのです.しかも $\frac{P_{k+1}}{P_k}$ のように分数計算にすることで,階乗が消えるというメリットもあります.あとは,(1), (2), (3) をみたす自然数 (k) の値を求めて,それに基づいて

$$P_0 < P_2 < \cdots P_{l-1} < P_l > P_{l+1} > \cdots$$

となるような l を求めれば , k=l のとき , P_k は最大となるというわけです .

☞注 : $P_0 < P_2 < \cdots P_{l-1} < P_l = P_{l+1} > P_{l+2} > \cdots$ のように最大となる k が 2 つ存在することもあります .

解答

(1) さいころを 1 回投げたとき ,1 の目がでる確率は同様に確からしく $rac{1}{6}$ であるから ,

$$P_k = {}_{30}C_k \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{30-k} = \frac{30!}{k!(30-k)!} \cdot \frac{5^{30-k}}{6^{30}}$$

よって,

$$\frac{P_{k+1}}{P_k} = \frac{\frac{30!}{(k+1)!(29-k)!} \cdot \frac{5^{29-k}}{6^{30}}}{\frac{30!}{k!(30-k)!} \cdot \frac{5^{30-k}}{6^{30}}}$$

$$= \frac{(30-k)\cdot 1}{(k+1)\cdot 5}$$

$$= \frac{30-k}{5(k+1)} \dots (答)$$

(2) (1) より,

$$\frac{P_{k+1}}{P_k} - 1 = \frac{30 - k}{5(k+1)} - 1$$
$$= \frac{30 - k - 5k - 5}{5(k+1)}$$
$$= \frac{25 - 6k}{5(k+1)}$$

ここで,

$$P_{k+1} > P_k \quad \Longleftrightarrow \quad \frac{P_{k+1}}{P_k} > 1 \quad \Longleftrightarrow \quad \frac{P_{k+1}}{P_k} - 1 > 0$$

であるから , 25-6k>0 となる . したがって , $k<\frac{25}{6}$ であり , k は整数であるから , $\pmb{k}=4\cdots$ (答)

(3) (2) より

$$0 \le k \le 4$$
 ගෙපු , $P_{k+1} > P_k$ $5 \le k$ ගෙපු , $P_{k+1} < P_k$

となるので,

$$P_0 < P_1 < P_2 < P_3 < P_4 < P_5 > P_6 > P_7 > \cdots$$

よって , P_k の値が最大となるのは k=5……(答)

また,2番目に大きい値になるのは,

$$\frac{P_6}{P_4} = \frac{\frac{30!}{6!24!} \cdot \frac{5^{24}}{6^{30}}}{\frac{30!}{4!26!} \cdot \frac{5^{26}}{6^{30}}} = \frac{26 \cdot 25}{6 \cdot 5 \cdot 5^2} = \frac{13}{15} < 1$$

より , $P_6 > P_4$ であるから , P_4 である . ゆえに , 求める k の値は , ${\pmb k} = {\pmb 4} {\pmb \cdots} {\pmb \cdots}$ (答)

—— ♦ ——— ♡ ———

解説

確率の最大値・最小値は,頻出の問題です.誘導してくれている場合が多いですが,誘導なしでも自分で求められるようになっていなければいけません.なお,最小値の場合は,

$$P_0 > P_2 > \cdots P_{l-1} > P_l < P_{l+1} < \cdots$$

となり,k=l のとき, P_k は最小になります.

本問は,2 番目に大きくなるときも問われているので, P_4 と P_6 の大小を比較しなければいけませんが,それぞれを独立に計算すると,ものすごい値になってしまいます.したがって,ここでも最大値を求めたときと同じように $\frac{P_6}{P_4}$ と 1 との大小を比較しているのです.