2022年度 川崎医科大学 前期理系 第2問

問題 数列 $\{a_n\}$ は $a_1=\frac{2}{7}$, $a_2=\frac{10}{7}$, $a_{n+2}-2a_{n+1}+a_n=\frac{6}{7}(n+1)$ $(n=1,\ 2,\ 3,\ \cdots)$ を満たしている。

(2) $a_{n+1}-a_n=b_n\;(n=1,\;2,\;3,\;\cdots\cdots)$ とおくと、数列 $\{b_n\}$ の一般項は

である。

(3) p, q, r, s を定数として, $a_n = pn^3 + qn^2 + rn + s$ と表すと, $p = \frac{2}{5}$, q = 5,

$$r = \frac{\forall}{\boxed{\flat}}, \ s = \boxed{2}$$
 である。

(i) $n \ge 2 ob$,

$$\sum_{k=2}^{n} \frac{3k+7}{7a_k-2k} = \boxed{2} - \frac{9}{n} + \frac{9}{n+5}$$

$$\sum_{k=2}^{\infty} \frac{3k+7}{7a_k - 2k} = \boxed{y}$$

である。

(ii) 実数 x に対して,x を超えない最大の整数を [x] で表す。このとき, $\sum\limits_{k=1}^{19} [a_k] =$ テトナニ である。また, $20 \leq \sum\limits_{k=1}^{n} a_k - \sum\limits_{k=1}^{n} [a_k] \leq 22$ となるような n の値の範囲は $\boxed{ ヌネ} \leq n \leq \boxed{ ノハ}$ である。

S_kawasakiika2022A_02.pbm