■2009 年 東京大学(前期) **■**

理科

 $oldsymbol{1}$ 自然数 $m \geq 2$ に対し , m-1 個の二項係数

$$_{m}C_{1}$$
, $_{m}C_{2}$, \cdots , $_{m}C_{m-1}$

を考え,これらすべての最大公約数を d_m とする.すなわち d_m はこれらすべてを割り切る最大の自然数で

- (1) m が素数ならば , $d_m = m$ であることを示せ .
- (2) すべての自然数 k に対し , k^m-k が d_m で割り切れることを , k に関する数学的帰納法によって示せ .
- (3) m が偶数のとき d_m は 1 または 2 であることを示せ .
- **2** 実数を成分にもつ行列 $A=\left(egin{array}{c} a & b \\ c & d \end{array}
 ight)$ と実数 r,s が下の条件 (i),(ii),(iii) をみたすとする .

(i) s > 1

(ii)
$$A \begin{pmatrix} r \\ 1 \end{pmatrix} = s \begin{pmatrix} r \\ 1 \end{pmatrix}$$

$$(iii)$$
 $A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ $(n=1,\,2,\,\cdots)$ とするとき , $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$

このとき以下の問に答えよ.
$$(1)\quad B=\left(\begin{array}{cc}1&r\\0&1\end{array}\right)^{-1}A\left(\begin{array}{cc}1&r\\0&1\end{array}\right)\ {\bf f}\ a,\,c,\,r,\,s\ {\bf f}\ {\bf f}\ {\bf h}\ {\bf f}\ {\bf f}\$$

$$(2)$$
 $B^n \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \left(\begin{array}{c} z_n \\ w_n \end{array} \right) \, (n=1,\,2,\,\cdots)$ とするとき , $\lim_{n \to \infty} z_n = \lim_{n \to \infty} w_n = 0$ を示せ .

- (3) c = 0 かつ |a| < 1 を示せ.
- $oxed{3}$ スイッチを 1 回押すごとに , 赤 , 青 , 黄 , 白のいずれかの色の玉が 1 個 , 等確率 $rac{1}{4}$ で出てくる機械があ る .2 つの箱 L と R を用意する . 次の 3 種類の操作を考える .
 - (A) 1回スイッチを押し,出てきた玉をLに入れる.
 - (B) 1回スイッチを押し,出てきた玉をRに入れる.
 - (C) 1回スイッチを押し、出てきた玉と同じ色の玉が、L になければその玉を L に入れ、 L にあればその玉を R に入れる.
- (1) L E R は空であるとする . 操作 (A) を E 回おこない , さらに操作 (B) を E 回おこなう . このとき Eにも R にも A 色すべての玉が入っている確率 P_1 を求めよ.
- (2) L と R は空であるとする、操作(C) を 5 回おこなう、このとき L に 4 色すべての玉が入っている確 率 P_2 を求めよ.
- (3) L E R は空であるとする . 操作 (C) を 10 回おこなう . このとき L にも R にも R 色すべての玉が入っ ている確率を P_3 とする . $rac{P_3}{P_1}$ を求めよ .

 $oldsymbol{a}$ a を正の実数とし、空間内の2 つの円板

$$D_1 = \{(x, y, z) \mid x^2 + y^2 \le 1, z = a\},\$$

$$D_2 = \{(x, y, z) \mid x^2 + y^2 \le 1, z = -a\}$$

を考える $.D_1$ を y 軸の回りに 180° 回転して D_2 に重ねる . ただし回転は z 軸の正の部分を x 軸の正の方向に傾ける向きとする . この回転の間に D_1 が通る部分を E とする .E の体積を V(a) とし ,E と $\{(x,y,z)\,|\,x\geqq0\}$ との共通部分の体積を W(a) とする .

- (1) W(a) を求めよ.
- (2) $\lim_{a\to\infty} V(a)$ を求めよ.

5

(1) 実数 x が -1 < x < 1, $x \neq 0$ をみたすとき,次の不等式を示せ.

$$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}}$$

(2) 次の不等式を示せ.

$$0.9999^{101} < 0.99 < 0.9999^{100}$$

平面上の 2 点 P, Q の距離を d(P,Q) と表すことにする.平面上に点 O を中心とする一辺の長さが 1000 の正三角形 $\triangle A_1A_2A_3$ がある. $\triangle A_1A_2A_3$ の内部に 3 点 B_1 , B_2 , B_3 を, $d(A_n,B_n)=1$ (n=1,2,3) と なるようにとる.また,

$$\vec{a}_1 = \overrightarrow{A_1}\overrightarrow{A_2}, \quad \vec{a}_2 = \overrightarrow{A_2}\overrightarrow{A_3}, \quad \vec{a}_3 = \overrightarrow{A_3}\overrightarrow{A_1}$$
 $\vec{e}_1 = \overrightarrow{A_1}\overrightarrow{B_1}, \quad \vec{e}_2 = \overrightarrow{A_2}\overrightarrow{B_2}, \quad \vec{e}_3 = \overrightarrow{A_3}\overrightarrow{B_3}$

とおく $.n=1,\,2,\,3$ のそれぞれに対して , 時刻 0 に ${\bf A}_n$ を出発し , $\stackrel{\circ}{e_n}$ の向きに速さ 1 で直進する点を考え , 時刻 t におけるその位置を ${\bf P}_n(t)$ と表すことにする .

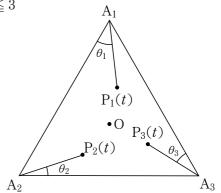
- (1) ある時刻 t で $d(\mathrm{P}_1(t),\,\mathrm{P}_2(t)) \le 1$ が成立した.ベクトル $\overset{\rightarrow}{e_1}-\overset{\rightarrow}{e_2}$ と,ベクトル $\overset{\rightarrow}{a_1}$ とのなす角度を θ とおく.このとき $|\sin\theta| \le \frac{1}{1000}$ となることを示せ.
- (2) 角度 θ_1 , θ_2 , θ_3 を $\theta_1 = \angle B_1 A_1 A_2$, $\theta_2 = \angle B_2 A_2 A_3$, $\theta_3 = \angle B_3 A_3 A_1$ によって定義する $.\alpha$ を $0 < \alpha < \frac{\pi}{2}$ かつ $\sin \alpha = \frac{1}{1000}$ をみたす実数とする .(1) と同じ仮定のもとで $,\theta_1 + \theta_2$ の値のとる範囲 を α を用いて表せ .
- (3) 時刻 t_1, t_2, t_3 のそれぞれにおいて,次が成立した.

$$d(P_2(t_1), P_3(t_1)) \le 1$$
, $d(P_3(t_2), P_1(t_2)) \le 1$, $d(P_1(t_3), P_2(t_3)) \le 1$

このとき , 時刻 $T=\frac{1000}{\sqrt{3}}$ において同時に

$$d(P_1(T), O) \le 3$$
, $d(P_2(T), O) \le 3$, $d(P_3(T), O) \le 3$

が成立することを示せ.



♠文 科

- **1** 座標平面において原点を中心とする半径 2 の円を C_1 とし , 点 (1,0) を中心とする半径 1 の円を C_2 とする . また , 点 (a,b) を中心とする半径 t の円 C_3 が , C_1 に内接し , かつ C_2 に外接すると仮定する . ただし , b は正の実数とする .
- (1) a, b を t を用いて表せ.また,t がとり得る値の範囲を求めよ.
- (2) t が (1) で求めた範囲を動くとき ,b の最大値を求めよ .
- $oldsymbol{2}$ 自然数 $m \geq 2$ に対し , m-1 個の二項係数

$$_{m}C_{1}$$
, $_{m}C_{2}$, \cdots , $_{m}C_{m-1}$

を考え,これらすべての最大公約数を d_m とする.すなわち d_m はこれらすべてを割り切る最大の自然数である.

- (1) m が素数ならば, $d_m = m$ であることを示せ.
- (2) すべての自然数 k に対し , k^m-k が d_m で割り切れることを , k に関する数学的帰納法によって示せ .
- 3 理科 3 と同じ.
- 2 次以下の整式 $f(x)=ax^2+bx+c$ に対し $S=\int_0^2 \left|f'(x)\right|dx$

を考える.

- (1) f(0) = 0, f(2) = 2 のとき S を a の関数として表せ.
- (2) f(0) = 0, f(2) = 2 をみたしながら f が変化するとき f の最小値を求めよ .

出題範囲と難易度

♣理 科

- **2** は難 III 数列の極限・C 行列
- 3 標準 A 確率
- 4 | *難 | III 積分法の応用
- 5 ぱ難 II 不等式の証明・III 微分法の応用
- 6 |難| B ベクトル

♣ 文 科

- 1 標準 II 図形と方程式
- **2** | *難| | I | 整数問題・ A | 論証・ B | 数列
- 3 標準 A 確率
- 4 標準 II 微分積分

略解

◇理 科

- 1 (1) 証明は省略
 - (2) 証明は省略
 - (3) 証明は省略
- - (2) 証明は省略
 - (3) 証明は省略
- $(1) P_1 = \frac{225}{4096}$

 - (3) $\frac{P_3}{P_1} = \frac{63}{16}$
- **4** (1) $W(a) = \frac{2}{3}\pi$
 - $(2) \quad \lim_{a \to \infty} V(a) = \frac{2}{3}\pi$
- 5 (1) 証明は省略
 - (2) 証明は省略
- 6 (1) 証明は省略
 - $(2) \quad \frac{\pi}{3} 2\alpha \le \theta_1 + \theta_2 \le \frac{\pi}{3} + 2\alpha$
 - (3) 証明は省略

◇ 文 科

- **1** (1) a = -3t + 2, $b = 2\sqrt{2t(1-t)}$, 0 < t < 1
 - $(2) \quad \sqrt{2} \quad \left(t = \frac{1}{2}\right)$
- 理科 ① の(1),(2)と同じ.理科 ③ と同じ.
- **4** (1) $S = \begin{cases} -\frac{4a^2 + 1}{2a} & \left(a \le -\frac{1}{2}\right) \\ 2 & \left(-\frac{1}{2} \le a \le \frac{1}{2}\right) \\ \frac{4a^2 + 1}{2a} & \left(a \ge \frac{1}{2}\right) \end{cases}$
 - (2) $2 \left(a = \frac{1}{2} \right)$