■2008 年 東北大学(前期) ▶

▲ 理系学部

➡注:理・工・医(医)・歯・薬学部は Д~6 を解答.医(医以外)・農学部は, Д~4 を解答.

 $oxed{1}$ 多項式 f(x) について,次の条件(i),(ii),(iii)を考える.

(i)
$$x^4 f\left(\frac{1}{x}\right) = f(x)$$

(ii)
$$f(1-x) = f(x)$$

(iii)
$$f(1) = 1$$

このとき,以下の問いに答えよ.

- (1) 条件(i)をみたす多項式 f(x) の次数は 4 以下であることを示せ.
- (2) 条件(i),(ii),(iii)をすべてみたす多項式 f(x)を求めよ.
- $m{2}$ n を 2 以上の自然数とする.平面上の $\triangle \mathrm{OA}_1\mathrm{A}_2$ は $\angle \mathrm{OA}_2\mathrm{A}_1=90^\circ$, $\mathrm{OA}_1=1$, $\mathrm{A}_1\mathrm{A}_2=\frac{1}{\sqrt{n}}$ をみたすとする. A_2 から OA_1 へ垂線をおろし,交点を A_3 とする. A_3 から OA_2 へ垂線をおろし,交点を A_4 とする.以下同様に,k=4,5,… について, A_k から OA_{k-1} へ垂線をおろし,交点を A_{k+1} として,順番に A_5 , A_6 ,… を定める. $\overrightarrow{h}_k=\overrightarrow{\mathrm{A}_k}\overrightarrow{\mathrm{A}}_{k+1}$ とおくとき,以下の問いに答えよ.
- (1) $k=1,\,2,\,\cdots$ のとき , ベクトル $\overrightarrow{h_k}$ と $\overrightarrow{h_{k+1}}$ の内積 $\overrightarrow{h_k}\cdot\overrightarrow{h_{k+1}}$ を n と k で表せ .
- (2) $S_n=\sum\limits_{k=1}^n\overrightarrow{h_k}\cdot\overrightarrow{h_{k+1}}$ とおくとき,極限値 $\lim\limits_{n o\infty}S_n$ を求めよ.ここで,自然対数の底 e について, $e=\lim\limits_{n o\infty}\left(1+rac{1}{n}
 ight)^n$ であることを用いてもよい.
- θ を $0<\theta<\frac{2\pi}{3}$ の範囲にある実数とし,空間の 4 点 O, A, B, C が,OA=OB=OC=1 かつ $\angle AOB=\angle BOC=\angle COA=\theta$ をみたすとする.このとき,以下の問いに答えよ.
- (1) $\triangle ABC$ の重心を G とするとき , AG と OG をそれぞれ θ で表せ .
- (2) θ を動かしたとき , O, A, B, C を頂点とする四面体の体積の最大値を求めよ .
- 4 点 P が次のルール(i), (ii) に従って数直線上を移動するものとする.
 - (i) 1,2,3,4,5,6 の目が同じ割合で出るサイコロを振り,出た目の数を k とする .P の座標 a について,a>0 ならば座標 a-k の点へ移動し,a<0 ならば座標 a+k の点へ移動する .
 - (ii) 原点に移動したら終了し,そうでなければ(i)を繰り返す.

このとき,以下の問いに答えよ.

- (1) P の座標が $1, 2, \cdots, 6$ のいずれかであるとき , ちょうど 3 回サイコロを振って原点で終了する確率を求めよ .
- (2) P の座標が $1, 2, \cdots, 6$ のいずれかであるとき , ちょうど m 回サイコロを振って原点で終了する確率を求めよ .
- (3) P の座標が 8 であるとき , ちょうど n 回サイコロを振って原点で終了する確率を求めよ .
- $oldsymbol{5}$ a を実数として , 2 次の正方行列 A , B を次のように定める .

$$A = \begin{pmatrix} 1 & a+1 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} a & 0 \\ 2 & -a \end{pmatrix}$$

このとき , $((\cos t)A + (\sin t)B)^2 = O$ をみたす実数 t が存在するような a の範囲を求めよ . ただし , O は

零行列とする.

- **6** k>1 として, $f(x)=x^2+2kx$ とおく.曲線 y=f(x) と円 $C:x^2+y^2=1$ の 2 つの交点の内で,第 1 象限にあるものを P とし,第 3 象限にあるものを Q とする.点 O(0,0),A(1,0),B(-1,0) に対して $\alpha=\angle AOP$, $\beta=\angle BOQ$ とおくとき,以下の問いに答えよ.
- (1) $k \in \alpha$ で表せ.
- (2) 曲線 y=f(x) と円 C で囲まれる 2 つの図形の内で , y=f(x) の上側にあるものの面積 S(k) を α と β で表せ .
- (3) $\lim_{k\to\infty} S(k)$ を求めよ.

♠ 文系学部

 $\mathbf{1}$ a を実数とし,

$$f(x) = x^3 + (2a - 4)x^2 + (a^2 - 4a + 4)x$$

とおく. 方程式 f(x) = 0 が 2 つの異なる実数解をもつとき,以下の問いに答えよ.

- (1) a の値の範囲を求めよ.
- (2) 関数 y = f(x) の極値を求めよ.
- (3) a が (1) で求めた範囲を動くとき,y=f(x) の極大値をあたえる x について,点 (x,f(x)) が xy 平面上にえがく図形を図示せよ.
- **2** *a, b, c, d, e* を実数とする. 多項式

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

が次の条件(i), (ii), (iii) をすべてみたすとき, a, b, c, d, e の値を求めよ.

- (i) $x^4 f\left(\frac{1}{x}\right) = f(x)$
- (ii) f(1-x) = f(x)
- (iii) f(1) = 1
- ③ 平面上の $\triangle OA_1A_2$ は $\angle OA_2A_1=90^\circ$, $OA_1=1$, $OA_2=\frac{1}{\sqrt{3}}$ をみたすとする $.A_2$ から OA_1 へ垂線をおろし ,交点を A_3 とする $.A_3$ から OA_2 へ垂線をおろし ,交点を A_4 とする . 以下同様に .k=4 , .5 、… について , .5 から OA_{k-1} へ垂線をおろし , 交点を .5 人.5 に下の問いに答えよ .5
- (1) $A_k A_{k+1}$ $(k = 1, 2, \cdots)$ を求めよ.
- (2) $\overrightarrow{h}_k = \overrightarrow{\mathbf{A}_k} \overrightarrow{\mathbf{A}}_{k+1}$ とおくとき,自然数 n に対して $\sum_{k=1}^n \overrightarrow{h}_k \cdot \overrightarrow{h}_{k+1}$ を求めよ.ただし, $\overrightarrow{h}_k \cdot \overrightarrow{h}_{k+1}$ は \overrightarrow{h}_k と \overrightarrow{h}_{k+1} の内積を表す.
- 4 点 P が次のルール(i), (ii) に従って数直線上を移動するものとする.
 - (i) 1,2,3,4,5,6 の目が同じ割合で出るサイコロを振り,出た目の数を k とする .P の座標 a について,a>0 ならば座標 a-k の点へ移動し,a<0 ならば座標 a+k の点へ移動する .
 - (ii) 原点に移動したら終了し,そうでなければ(i)を繰り返す.

このとき,以下の問いに答えよ.

(1) P の座標が $1,2,\cdots,6$ のいずれかであるとき , ちょうど 2 回サイコロを振って原点で終了する確率を求

めよ.

- (2) P の座標が $1, 2, \cdots, 6$ のいずれかであるとき , ちょうど 3 回サイコロを振って原点で終了する確率を求めよ .
- (3) P の座標が 7 であるとき , ちょうど n 回サイコロを振って原点で終了する確率を求めよ .

出題範囲と難易度

	ΙĦ	环	쓱	立(7
•	1年	尔	~	пIJ

- 1 標準 II 式と証明
- **2** 標準 B ベクトル・III 数列の極限
- 3 標準 II 微分積分
- 4 標準 A 確率
- 5 標準 II 三角関数・C 行列
- 6 標準 II 図形と方程式・微分積分・III 関数の極限

♣ 文系学部

- 1 標準 II 微分積分
- 2 標準 II 式と証明
- **3** 標準 B 数列・ベクトル
- 4 標準 A 確率

略解

◇ 理系学部

- 1 (1) 証明は省略
 - (2) $f(x) = x^4 2x^3 + 3x^2 2x + 1$
- **2** (1) $\vec{h}_k \cdot \vec{h}_{k+1} = -\frac{1}{n} \left(1 \frac{1}{n} \right)^k$
 - (2) $\lim_{n \to \infty} S_n = -1 + \frac{1}{e}$
- **3** (1) $AG = \frac{2}{\sqrt{3}}\sin\frac{\theta}{2}$, $OG = \sqrt{1 \frac{4}{3}\sin^2\frac{\theta}{2}}$
- (2) $\frac{1}{6}$ (1) $\frac{25}{216}$ (2) $\frac{1}{6} \left(\frac{5}{6}\right)^{m-1}$
 - (3) $\left\{ \begin{array}{l} n=1 \text{ のとき } 0 \\ n=2 \text{ のとき } \frac{5}{36} \\ n \geq 3 \text{ のとき } \frac{31}{216} \left(\frac{5}{6}\right)^{n-3} \end{array} \right.$

- **5** $a \le -1, -\frac{1}{3} \le a$ **6** (1) $k = \frac{\sin \alpha \cos^2 \alpha}{2\cos \alpha}$ (2) $S(k) = \frac{1}{2}(\pi \alpha + \beta) + \frac{1}{6}\cos^3 \alpha + \frac{1}{6}\cos^3 \beta$
 - (3) $\lim_{k \to \infty} S(k) = \frac{n}{2}$

◇ 文系学部

- **1** (1) a<2, 2<a
 - $\left\{\begin{array}{ll} a{<}2\ {\it o}$ とき 極大値 $\frac{4}{27}(2-a)^3,$ 極小値 0 $a{>}2\ {\it o}$ とき 極大値 0, 極小値 $\frac{4}{27}(2-a)^3$
 - (3) 右図の太実線部分.
- **2** a = 1, b = -2, c = 3, d = -2, e = 1
- **3** (1) $A_k A_{k+1} = \sqrt{\frac{2}{3}} \left(\frac{1}{\sqrt{3}}\right)^{k-1}$
 - (2) $\sum_{k=1}^{n} \vec{h}_k \cdot \vec{h}_{k+1} = \frac{1}{3} \left\{ \left(\frac{1}{3} \right)^n 1 \right\}$
- 4 (1) $\frac{5}{36}$ (2) $\frac{25}{216}$ (3) $\begin{cases} n = 1 \text{ のとき } 0 \\ n \ge 2 \text{ のとき } \frac{1}{6} \left(\frac{5}{6}\right)^{n-2} \end{cases}$

