問題と分析

■2014 年 名古屋工業大学(前期) **■**

1 以下の問いに答えよ.

- (1) $r \neq 1$ のとき $S_n = r + 2r^2 + 3r^3 + \dots + nr^n$ を求めよ.
- (2) x > 0 に対して,

$$f_n(x) = e^{-x} + 2e^{-2x} + 3e^{-3x} + \dots + ne^{-nx}$$

とおく・極限 $f(x)=\lim_{n\to\infty}f_n(x)$ を求めよ・ただし, $\lim_{t\to\infty}te^{-t}=0$ であることを用いてもよい・

- (3) (2) で得られた関数 f(x) について , 不定積分 $\int f(x)\,dx$ を求めよ .
- (4) (2) で得られた関数 f(x) について,定積分 $\int_{\log 2}^{\log 3} x f(x) \, dx$ を求めよ.
- **2** 放物線 $y=x^2$ 上の動点 $\mathrm{P}(p,\,p^2),\,\mathrm{Q}(q,\,q^2)$ が次の条件をみたしている . 0

ただし O は原点である.点 P と点 Q における接線の交点を R とする.

- (1) pのとり得る値の範囲を求めよ.
- (2) q を p の式で表せ.
- (3) $A \in \mathbb{R}$ の X 座標 A 、Y 座標それぞれのとり得る値の範囲を求めよ .
- (4) 点 R が描く曲線の方程式を求めよ.
- (5) 点 R が描く曲線の漸近線を求めよ.
- **3** 実数 a, b, c, d について $(a-d)^2 + 4bc = 0$ が成立している. このとき行列

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = A - \frac{a+d}{2}E$$

について , 以下の問いに答えよ . ただし , $A = \frac{a+d}{2}E$ とする .

- 行列 B² を求めよ。
- (2) 自然数 n に対して

$$A^n = pA + qE$$

となる実数 p, q を n と a, b, c, d で表せ.

(3) 行列 A が次をみたすとき A を求めよ .

$$A^5 = \left(\begin{array}{cc} 11 & -20 \\ 5 & -9 \end{array}\right)$$

- 座標空間に立方体 K があり,原点 O と 3 点 A(a,b,0),B(r,s,t),C(3,0,0) が次の条件をみたしている.
 - (i) OA, AB, BC は立方体 K の辺である.
 - (ii) OC は立方体 K の辺ではない .
 - (iii) b > 0, t > 0

このとき,以下の問いに答えよ.

- (1) 立方体 K の一辺の長さ l を求めよ .
- (2) 点 A の座標を求めよ.
- (3) 点 B の座標を求めよ.
- (4) 辺 AB 上の点 P から x 軸に下ろした垂線の足を $H(x,\,0,\,0)$ とする . PH の長さを x を用いて表せ .
- (5) 立方体 K を x 軸を回転軸として 1 回転させて得られる回転体の体積 V を求めよ .

出題範囲と難易度

- 1 標準 III 積分法
- **2** 標準 C いろいろな曲線
- **3** 標準 C 行列
- 4 | | 類 | III 積分法の応用

略解

(1)
$$S_n = \frac{r - (n+1)r^{n+1} + nr^{n+2}}{(1-r)^2}$$

(2) $f(x) = \frac{e^x}{(e^x - 1)^2}$

(2)
$$f(x) = \frac{e^x}{(e^x - 1)^2}$$

(3)
$$\int f(x) dx = -\frac{1}{e^x - 1} + C$$
 (C は積分定数)

(4)
$$\int_{\log 2}^{\log 3} x f(x) \, dx = 3\log 2 - \frac{3}{2}\log 3 \left(= \log \frac{8\sqrt{3}}{9}$$
でも可)

2 (1)
$$0$$

$$(2) \quad q = \frac{1+p}{1-p}$$

(3)
$$x > \frac{1}{2}, y > 0$$

(4)
$$\frac{x^2}{2} - \frac{(y+3)^2}{8} = -1 \quad \left(x > \frac{1}{2}, \ y > 0\right)$$

(5)
$$y = 2x - 3$$

3 (1)
$$B^2 = O$$

(2)
$$p = n \left(\frac{a+d}{2}\right)^{n-1}, \quad q = (1-n) \left(\frac{a+d}{2}\right)^n$$

$$(3) \quad A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$$

4 (1)
$$l = \sqrt{3}$$

(2)
$$A(1, \sqrt{2}, 0)$$

(3)
$$B\left(2, \frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2}\right)$$

(4) PH =
$$\sqrt{2x^2 - 6x + 6}$$

(5)
$$V = 3\pi$$