■2017 年 兵庫県立大学(前期) **■**

♠ 経済・経営学部

- 1 以下の問に答えなさい.
- (1) 負でない整数 n に対して、 $n^2-40n+319$ が正の素数であるための必要十分条件は n=30 または、n=10 であることを示しなさい.
- (2) 10 以下の正の素数は, 2, 3, 5, 7 に限られ, それらは, 103 の約数ではない. この事実を用いて, 103 は素数であることを示しなさい.
- **2** $f(x) = x^2$, $g(x) = \left(x \frac{1}{2}\right)^2 + d$ に対し、2 つの放物線 y = f(x) と y = g(x) の共通接線の方程式を y = l(x) とする。以下の間に答えなさい。
- (1) y = f(x) と y = g(x) の交点の座標を d を用いて表しなさい. また, x = a における y = f(x) の接線の方程式を求めなさい.
- (2) l(x) を d を用いて表しなさい.
- (3) 2 つの放物線 y = f(x), y = g(x) と共通接線 y = l(x) で囲まれる領域の面積 S は, d の値に依存しないことを示しなさい.
- **3** 実数 p, q, r に対して, x の 3 次多項式 $f(x) = x^3 + px^2 + qx + r$ を考える. 以下の問に答えなさい.
- (1) 複素数 α に対して, $f(\alpha)=0$ であるなら, $f(\overline{\alpha})=0$ であることを示しなさい. ただし, $\overline{\alpha}$ は α の共役 複素数である. つまり, α の実部,虚部を各々 s, t とすれば, $\alpha=s+ti$, $\overline{\alpha}=s-ti$ である. ただし,i は 虚数単位である.
- (2) α , β , γ を 3 次方程式 f(x)=0 の 3 つの解とする. このとき, α , β , γ の少なくとも一つは実数であることを示しなさい.
- **4** O を座標原点とする座標空間において、点 C(0,3,4) を中心とする球があり、その球面 S の方程式を $x^2+(y-3)^2+(z-4)^2=1$ とする.このとき,S 上を動く点 P(x,y,z) に関して,以下の間に答えなさい.
- (1) P が y=z を満たしながら S 上を動くとき,原点 O から P までの距離 OP の最大値,および,最小値を求めなさい.
- (2) P が S 上を自由に動くとき、原点 O から P までの距離 OP の最大値、および、最小値を求めなさい。
- (3) 三角形 OCP の面積を A とする. A の最大値、および、そのときの y と z の満たす関係式を求めなさい.
- **5** 袋の中に赤玉、青玉、黄玉が、それぞれ 2 個、3 個、4 個入っている. いまこの袋から、玉を 1 個ずつ続けて 3 個取り出す. 取り出された青玉の数が m 個 (m=0,1,2,3) で、黄玉が最初に取り出されたのが n 回目 (n=0,1,2,3) である確率を P(m,n) とする. ただし、n=0 は、黄玉が取り出されないことを意味するものとする. 以下の間に答えなさい.
- (1) P(1,0) を求めなさい.
- (2) P(1,1) を求めなさい.
- (3) P(1,2) を求めなさい.
- (4) P(m, n) = 0 となる (m, n) を全て求めなさい.

出題範囲と難易度

♣ 経済·経営学部

1 | 分析中 | A 整数の性質

2 |分析中| II 微分積分

3 |分析中| II 複素数と方程式

4 |分析中| B ベクトル (空間)

5 | 分析中 | **A** 確率

➡注: 出題範囲は分析中のため変更される場合があります.