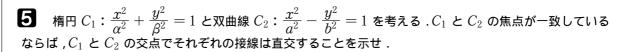
■2007 年 北海道大学(前期)▶

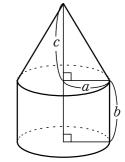
♠ 理系学部

- $oxed{1}$ 方程式 $x^2+y^2-4y+2=0$ で定義される円 C を考える .
- (1) 点 $A(-\sqrt{2},0)$ と点 O(0,0) を通り, 円 C に接する円の中心の座標を求めよ.
- (2) 点 P が円 C 上を動くとき , $\cos \angle APO$ の最大値と最小値を求めよ .
- 4 枚のカードがあって ,1 から 4 までの整数がひとつずつ書かれている.このカードをよく混ぜて ,1 枚引いては数字を記録し ,カードを元に戻す.この試行を n 回繰り返し ,記録した順に数字を並べて得られる数列を , a_1,a_2,\cdots,a_n とする.
- (1) 条件 $a_1 \leq a_2 \leq \cdots \leq a_n = j$ を満たす数列が $A_n(j)$ 通りあるとする.ただし, $j=1,\,2,\,3,\,4$ とする.
 - (i) $A_n(1), A_n(2)$ を求めよ.
 - (ii) $n \ge 2$ のとき , $A_n(j)$ (j=3,4) を $A_{n-1}(1)$, $A_{n-1}(2)$, …, $A_{n-1}(j)$ で表し , $A_n(3)$, $A_n(4)$ を 求めよ .
- (2) $n \ge 2$ のとき , $a_1 \le a_2 \le \cdots \le a_{n-1}$ かつ $a_{n-1} > a_n$ となる確率を求めよ .
- ③ xy 平面上の曲線 $y=xe^x$ と x 軸および 2 直線 $x=n, \ x=n+1$ で囲まれる図形を D_n とする . ただし , n を自然数とする .
- (1) 図形 D_n の面積を S_n として , $\lim_{n\to\infty}\frac{S_n}{ne^n}$ を求めよ .
- (2) 図形 D_n を x 軸のまわりに 1 回転してできる立体の体積を V_n として , $\lim_{n o \infty} rac{V_n}{(S_n)^2}$ を求めよ .
- 図のような,半径 a の円を底面とする高さ b の円柱の上に,同じ大きさの円を底面とする高さ c の直円錐の屋根をのせてできる建物を考える.
- (1) V をこの建物の体積 , S をこの建物の外側の表面積 (底面は除く)とする . V と S を a, b, c で表せ .
- (2) V を一定に保ちながら a,b,c を動かして ,S を最小にしたい .
 - (i) $b=xa,\,c=ya$ とおき ,V と a を一定としたとき ,S の最小値 T を V と a で表せ .
 - (ii) T が最小となるときの比 a:b:c を求めよ.



♠ 文系学部

- $oxed{1}$ a,b を実数とする.方程式 $x^2+ax+b=0$ が実数解をもち,すべての解の絶対値が 1 以下であるとする.
- (1) この条件を満たす点 (a, b) 全体を ab 平面上に図示せよ.
- (2) a+2b の最大値と最小値を求めよ.



- **2** 方程式 $x^2 + y^2 4y + 2 = 0$ で定義される円 C を考える.
- (1) 点 $A(-\sqrt{2},0)$ と点 O(0,0) を通り中心の座標が $\left(-\frac{\sqrt{2}}{2},0\right)$ および $\left(-\frac{\sqrt{2}}{2},2\right)$ である 2 つの円は,どちらも円 C に接することを示せ.
- (2) 点 P が円 C 上を動くとき, $\cos \angle APO$ の最大値と最小値を求めよ.
- **③** 数 1, 2, 3 を重複を許して n 個並べてできる数列 a_1, a_2, \dots, a_n を考える.
- (1) 条件 $a_1 \leq a_2 \leq \cdots \leq a_n = j$ を満たす数列が $A_n(j)$ 通りあるとする. ただし, $j=1,\,2,\,3$ とする.
 - (i) $A_n(1), A_n(2)$ を求めよ.
 - (ii) $n \ge 2$ のとき, $A_n(3)$ を $A_{n-1}(1)$, $A_{n-1}(2)$, $A_{n-1}(3)$ で表し, $A_n(3)$ を求めよ.
- (2) $n \ge 2$ のとき,条件

$$a_1 \leqq a_2 \leqq \cdots \leqq a_{n-1}$$
 かつ $a_{n-1} > a_n$

を満たす数列は何通りあるか.

- $a>0,\ b\ge 0,\ 0< p<1$ とし,関数 $y=ax-bx^2$ のグラフは定点 $\mathrm{P}(p,\ p^2)$ を通るとする.このグラフの $0\le x\le p$ に対応する部分を C で表す.
- (1) $b \in a \cup p$ を用いて表せ.
- (2) a が範囲 $p \leq a \leq 1$ を動くとき , C 上の点 (x,y) の動く領域を D とする .
 - (i) x を固定して y の動く範囲を求めよ.
 - (ii) *D* を図示せよ.
- (2) D の面積 S を p で表し, $rac{1}{2} \leqq p \leqq rac{3}{4}$ の範囲で S の最大値と最小値を求めよ.

出題範囲と難易度

♣ 理系学部

- 2 標準 A 場合の数・確率
- 3 標準 III 極限・積分法の応用(面積・回転体の体積)
- 5 標準 C いろいろな曲線(楕円・双曲線)

♣ 文系学部

- 1 基本 II 図形と方程式(線形計画法)
- 2 標準 II 図形と方程式(円)・理系 1 を改題
- 3 標準 A 場合の数・確率・理系 2 を改題
- 【到 標準 II 図形と方程式(領域図示)・微分積分(面積の最大最小)

◇ 理系学部

1 (1)
$$\left(-\frac{\sqrt{2}}{2}, 0\right), \left(-\frac{\sqrt{2}}{2}, 2\right)$$

(2) 最大值
$$\frac{2\sqrt{2}}{3}$$
 , 最小值 0

2 (1) (i)
$$A_n(1) = 1, A_n(2) = n$$

(ii)
$$A_n(3) = A_{n-1}(1) + A_{n-1}(2) + A_{n-1}(3) = \frac{1}{2}n(n+1)$$

 $A_n(4) = A_{n-1}(1) + A_{n-1}(2) + A_{n-1}(3) + A_{n-1}(4) = \frac{1}{6}n(n+1)(n+2)$
 $(n-1)(n+1)(n+2)$

(2)
$$\frac{(n-1)(n+1)(n+2)}{2 \cdot 4^n}$$

3 (1)
$$e-1$$

$$\frac{\pi(e+1)}{2(e-1)}$$

4 (1)
$$V = \pi a^2 b + \frac{1}{3} \pi a^2 c, S = 2\pi a b + \pi a \sqrt{a^2 + c^2}$$

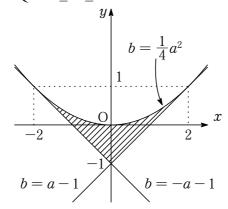
4 (1)
$$V = \pi a^{2}b + \frac{1}{3}\pi a^{2}c, S = 2\pi ab + \pi a\sqrt{a^{2} + c^{2}}$$
(2) (i)
$$\begin{cases} ① & \frac{2}{\sqrt{5}} < \frac{3V}{\pi a^{3}} \text{ のとき }, \quad T = \frac{\sqrt{5}}{3}\pi a^{2} + \frac{2V}{a} \\ ② & \frac{2}{\sqrt{5}} \ge \frac{3V}{\pi a^{3}} \text{ のとき }, \quad T \text{ は存在しない }. \end{cases}$$

(ii)
$$a:b:c=\sqrt{5}:1:2$$

5 (1) 証明は省略

◇ 文系学部

$$egin{aligned} egin{aligned} b & \leq rac{a^2}{4} \\ b & \geq a-1 \\ b & \geq -a-1 \\ -2 & \leq a \leq 2 \end{aligned} \end{aligned}$$
 (境界線上の点を含む)



2 (1)

(2) 最大値 $\frac{2\sqrt{2}}{3}$, 最小値 0

- **3** (1) (i) $A_n(1) = 1, A_n(2) = n$
 - (ii) $A_n(3) = A_{n-1}(1) + A_{n-1}(2) + A_{n-1}(3) = \frac{1}{2}n(n+1)$
 - (2) (n-1)(n+1)
- **4** (1) $b = \frac{a}{p} 1$
 - (2) (i) $px \le y \le \left(1 \frac{1}{p}\right)x^2 + x$
 - (ii) 境界線上の点を含む

